Place the next vector with its tail at the previous vector's head. ... To subtract vectors, proceed as if adding the two vectors, but flip the vector to be subtracted across the axes and then join it tail to head as if adding. Adding or subtracting any number of vectors yields a resultant vector.
Explanation:
Answer:
im sure your already past this but it's E.
Explanation:
This is because in this case potential energy is linear to height, which means that the higher the more potential energy.
Complete Question
The complete question is shown on the first uploaded image
Answer:
The theoretical angular magnification lies within the angular magnification range
Explanation:
From the question we are told that
The focal length of B is 
The focal length of A is 
The theoretical angular magnification is mathematically represented as


Form the question the measured angular magnification ranges from 4 -5
So from the value calculated and the value given we can deduce that the theoretical angular magnification lies within the angular magnification range
The North Shore mountains
Answer:
θ=108rad
t =10.29seconds
α=-8.17rad/s²
Explanation:
Given that
At t=0, Wo=24rad/sec
Constant angular acceleration =30rad/s²
At t=2, θ=432rad as it try to stop because the circuit break
Angular motion
W=Wo+αt
θ=Wot+1/2αt²
W²=Wo²+2αθ
We need to find θ between 0sec to 2sec when the wheel stop
a. θ=Wot+1/2αt²
θ=24×2+1/2×30×2²
θ=48+60
θ=108rad.
b. W=Wo+αt
W=24+30×2
W=84rad/s
This is the final angular velocity which is the initial angular velocity when the wheel starts to decelerate.
Wo=84rad/sec
W=0rad/s, because the wheel stop at θ=432rad
Using W²=Wo²+2αθ
0²=84²+2×α×432
-84²=864α
α=-8.17rad/s²
It is negative because it is decelerating
Now, time taken for the wheel to stop
W=Wo+αt
0=84-8.17t
-84=-8.17t
Then t =10.29seconds.
a. θ=108rad
b. t =10.29seconds
c. α=-8.17rad/s²