Answer:
4.9612 s
Explanation:
Applying,
T = 2π√(L/g)............... Equation 1
Where T = period of the pendulum, L = Lenght of the pendulum, g = acceleration due to gravity of the moon, π = pie.
From the question,
Given: L = 1 m, g = 1.6 m/s²
Constant: π = 3.14
Substitute these values into equation 1
T = 2×3.14×√(1/1.6)
T = 6.28√(0.625)
T = 6.28×0.79
T = 4.9612 s
Answer:
that would be newtons 3rd law
Explanation:
because its how it is
Complete question:
A 200 g load attached to a horizontal spring moves in simple harmonic motion with a period of 0.410 s. The total mechanical energy of the spring–load system is 2.00 J. Find
(a) the force constant of the spring and (b) the amplitude of the motion.
Answer:
(a) the force constant of the spring = 47 N/m
(b) the amplitude of the motion = 0.292 m
Explanation:
Given;
mass of the spring, m = 200g = 0.2 kg
period of oscillation, T = 0.410 s
total mechanical energy of the spring, E = 2 J
The angular speed is calculated as follows;

(a) the force constant of the spring

(b) the amplitude of the motion
E = ¹/₂kA²
2E = kA²
A² = 2E/k

Well, as the waves move it moves the rope as if its trying to take shape of it. Since the rope it light it will move along the ocean and the ocean will keep pushing up on the rope. (even without the waves the water is pushing the rope up so it can take its shape)
Maybe that'll help