1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
TEA [102]
3 years ago
14

Which of the following statements are true for magnetic force acting on a current-carrying wire in a uniform magnetic field? Che

ck all that apply. Check all that apply. The magnetic force on the current-carrying wire is strongest when the current is perpendicular to the magnetic field lines. The direction of the magnetic force acting on a current-carrying wire in a uniform magnetic field is perpendicular to the direction of the field. The magnetic force on the current-carrying wire is strongest when the current is parallel to the magnetic field lines. The direction of the magnetic force acting on a current-carrying wire in a uniform magnetic field is perpendicular to the direction of the current.
Physics
1 answer:
qaws [65]3 years ago
6 0

Answer:

The following statements are correct.

1. The magnetic force on the current-carrying wire is strongest when the current is perpendicular to the magnetic field lines.

2. The direction of the magnetic force acting on a current-carrying wire in a uniform magnetic field is perpendicular to the direction of the field.

3. The direction of the magnetic force acting on a current-carrying wire in a uniform magnetic field is perpendicular to the direction of the current.

Wrong statements:

1. The magnetic force on the current-carrying wire is strongest when the current is parallel to the magnetic field lines.

Explanation:

You might be interested in
A box is initially at rest on a frictionless inclined plane
Finger [1]
Yesunlesit sat an inclone 
6 0
4 years ago
03: A mass with a 60 g vibrate at the end of a spring. The amplitude of the motion is 0.394 ft
Flauer [41]

Answer:

a) T = 1.69 s, b)  k = 0.825 N / m, c)  v = 1.46 feet/s, d) a = 5.41 ft / s²,

e)   v = - 1,319 ft / s,    a = - 2.70 ft / s², f) K = 4.8 10⁻³ J, U = 1.49 10⁻³ J

Explanation:

In a mass-spring system with simple harmonic motion, the angular velocity is

         w = \sqrt{\frac{k}{m} }

a) find the period

angular velocity, frequency, and period are related

         w = 2π f = 2π / T

          f = 1 / T

          T = 1 / f

           T = 1 / 0.59

           T = 1.69 s

b) the spring constant

         w = 2π f

         w = 2π 0.59

         w = 3.70 rad / s

         w² = k / m

          k = w² m

          k = 3.70² 0.060

          k = 0.825 N / m

c) the maximum speed

simple harmonic movement is described by the expression

          x = A cos (wt + Ф)

speed is defined by

         v =\frac{dx}{dt}

          v = -A w sin (wt + fi)

the speed is maximum when the cosine is ± 1

          v = A w

          v = 0.394 3.70

          v = 1.46 feet/s

d) maximum acceleration

            a = \frac{dv}{dt}

            a = - A w² cos wt + fi

the acceleration is maximum when the cosine is ±1

            a = A w²

            a = 0.394 3.70²

            a = 5.41 ft / s²

e) velocity and acceleration for x = 6 cm

let's reduce the cm to feet

            x = 6 cm (1 foot / 30.48 cm) = 0.1969 foot

Before doing this part we must find the phase angle (Ф), the most common way to start the movement is to move the spring a small distance and release it, so its initial speed is zero for t = 0 s

let's use the expression for the velocity

           v = -A w sin (0 + Фi)

           0 = - A w sin Ф

so sin Ф = 0 which implies that Фi = 0

the equation of motion is

            x = A cos wt

            x = 0.394 cos 3.70t

we substitute

           0.1969 = 0.394 cos 370t

           3.70 t = cos⁻¹ (0.1969 / 0.394)

let's not forget that the angle is in radians

           3.70, t = 1.047

           t = 1.047 / 3.70

           t = 0.2826 s

we substitute this time in the equation for velocity and acceleration

           v = - Aw sin wt

           v = - 0.394 3.70 sin 3.70 0.2826

           v = - 1,319 ft / s

           a = - A w² cos wt

           a = - 0.394 3.70² cos 3.70 0.2826

           a = - 2.70 ft / s²

f) the kinetic and potential energy at this point

           K = ½ m v²

let's slow down to the SI system

           v = 1.319 ft / s (1 m / 3.28 ft) = 0.402 m / s

           

           K = ½ 0.060 0.402²

           K = 4.8 10⁻³ J

           U = ½ k x²

           U = ½ 0.825 0.06²

           U = 1.49 10⁻³ J

5 0
3 years ago
You're driving your new sports car at 85 mph over the top of a hill that has a radius of curvature of 525 m.
Bumek [7]

Explanation:

It is given that,

Speed of the sports car, v = 85 mph = 37.99 m/s

The radius of curvature, r = 525 m

Let W_N is the normal weight and W_A is the apparent weight of the person. Its apparent weight is given by :

W_A=mg-\dfrac{mv^2}{r}

So, \dfrac{W_A}{W_N}=\dfrac{mg-\dfrac{mv^2}{r}}{mg}

\dfrac{W_A}{W_N}=\dfrac{g-\dfrac{v^2}{r}}{g}

\dfrac{W_A}{W_N}=\dfrac{9.8-\dfrac{(37.99)^2}{525}}{9.8}

\dfrac{W_A}{W_N}=0.719

or

\dfrac{W_A}{W_N}=71.9\%

Hence, this is the required solution.

5 0
4 years ago
An electromagnetic wave of intensity 150 W/m2 is incident normally on a rectangular black card with sides of 25 cm and 30 cm tha
LenKa [72]

Answer:

3.75 × 10⁻⁸ N

Explanation:

Given:

Intensity of the electromagnetic wave, I = 150 W/m²

Sides of the board = 25 cm (= 0.25 m) and 30 cm (= 0.30 m)

therefore,

the area of the rectangular box, A = 0.25 × 0.30 = 0.075 m²

Now,

force exerted on the card by the radiation, F = \frac{IA}{C}

here,

C is the speed of the light = 3 × 10⁸ m/s

on substituting the respective values, we get

F = \frac{150\times0.075}{3\times10^8}

or

F = 3.75 × 10⁻⁸ N

5 0
3 years ago
Which of the following is a category of mechanical wave?
givi [52]

Answer:

a

because the mechanical wave is when it goes over and over again

8 0
3 years ago
Read 2 more answers
Other questions:
  • Ray creates an energy transfer diagram for a hair dryer. However, the diagram contains an error that could be corrected in sever
    7·2 answers
  • A boulder rolls off a 100 meter cliff with a horizontal velocity of 2 m/s.
    7·1 answer
  • Suppose that a sled is accelerating at a rate of 2 m/s2. If the net force is tripled and the mass is halved, then what is the ne
    5·1 answer
  • a) If a proton moved from a location with a 5.0 V potential to a location with 7.5 V potential, would its potential energy incre
    13·1 answer
  • a quantity of n2 gas originally held at 4.75 atm pressure in a 1.00-L container at 26c is transerred to a 10.0-L container at 20
    15·2 answers
  • 5. A race car has a mass of 710 kg. It starts from rest and travels 40.0m in 3.0s. The car is uniformly accelerated during the e
    7·1 answer
  • Infer whether a circuit breaker should be connected in parallel to the circuit that it is protecting.
    13·1 answer
  • Which of the following describes the flow of charges through a wire or a conductor?
    15·1 answer
  • What is wrong with the following statement: When you exert a force on a baseball, the equal and opposite force on the ball balan
    12·1 answer
  • Prove that Efficiency=MA/ VR x 100%
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!