Answer:

0.3619sec
Explanation:
Given that
Mass,m=148 g
Length,L=13 cm
Velocity,u'(0)=10 cm/s
We have to find the position u of the mass at any time t
We know that

Where 

u(0)=0
Substitute the value

Substitute u'(0)=10


Substitute the values

Period =T = 2π/8.68
After half period
π/8.68 it returns to equilibruim
π/8.68 = 0.3619sec
A hypothesis is an educated prediction that can be tested.
MARK ME BRAINLIEST!!
your answer should be “C”.
Answer:
160.75 N
Explanation:
The downward velocity has no effect on the force situation, it is only changes in velocity (plus, of course, gravity, which is always there) that require a force. At constant velocity, the bottom spring s_3 is supporting its mass m_3 to balance gravity.
As the elevator slows, though, it also ends up slowing down the spring arrangement, too. However, because the stretching takes time, it means that some damped harmonic motion will be set up in the spring chain.
When the motion has finally damped out, the net force the bottom spring s3 exerts on m3 has two components--that of gravity and of the deceleration of the elevator:
F_3net = m3 * (g + a) = 10.5×(9.81+5.5)= 10.5×15.31= 160.75 N
To find:
The equation to find the period of oscillation.
Explanation:
The period of oscillation of a pendulum is directly proportional to the square root of the length of the pendulum and inversely proportional to the square root of the acceleration due to gravity.
Thus the period of a pendulum is given by the equation,

Where L is the length of the pendulum and g is the acceleration due to gravity.
On substituting the values of the length of the pendulum and the acceleration due to gravity at the point where the period of the pendulum is being measured, the above equation yields the value of the period of the pendulum.
Final answer:
The period of oscillation of a pendulum can be calculated using the equation,