Remember Coulomb's law: the magnitude of the electric force F between two stationary charges q₁ and q₂ over a distance r is

where k ≈ 8,98 × 10⁹ kg•m³/(s²•C²) is Coulomb's constant.
8.1. The diagram is simple, since only two forces are involved. The particle at Q₂ feels a force to the left due to the particle at Q₁ and a downward force due to the particle at Q₃.
8.2. First convert everything to base SI units:
0,02 µC = 0,02 × 10⁻⁶ C = 2 × 10⁻⁸ C
0,03 µC = 3 × 10⁻⁸ C
0,04 µC = 4 × 10⁻⁸ C
300 mm = 300 × 10⁻³ m = 0,3 m
600 mm = 0,6 m
Force due to Q₁ :

Force due to Q₃ :

8.3. The net force on the particle at Q₂ is the vector

Its magnitude is

and makes an angle θ with the positive horizontal axis (pointing to the right) such that

where we subtract 180° because
terminates in the third quadrant, but the inverse tangent function can only return angles between -90° and 90°. We use the fact that tan(x) has a period of 180° to get the angle that ends in the right quadrant.
Increasing his acceleration will impact his velocity and rate of displacement covered in that as the speed increases due to the increased rate of acceleration, the rate of air resistance also increases.
<h3>What is air resistance?</h3>
Air resistance is a force created by air. When an item moves through the air, the force operates in the opposite direction.
When a diver descends, the force of air resistance acts to counteract the force of gravity. As the skydiver falls faster and faster, the quantity of air resistance grows until it equals the magnitude of gravity's force.
A balance of forces is achieved when the force of gravity equals the force of air resistance, and the skydiver no longer accelerates. The skydiver reaches what is known as terminal velocity.
Learn more about air resistance:
brainly.com/question/16859536
#SPJ1
Answer:
i = 61 degree
Explanation:
Given,

Now, by the snell's law

Now,
Sin i / sin r = n 2 / n 1
sin i / sin r (45 - 24.09) = 2.45 / 1
i = 60.97 degree
"Oscilloscope" can be used to show the shape of a sound wave
Hope this helps!
Answer:
-1.03 m/s²
Explanation:
Acceleration: This can be defined as the rate of change of velocity. The S. I unit of acceleration is m/s².
Mathematically, acceleration is expressed as
a = (v-u)/t ........................ Equation 1
Where a = acceleration, v = final velocity, u = initial velocity, t = time.
Given: u = 13.60 m/s, v = 7.20 m/s t = 6.2 s.
Substituting into equation 2
a = (7.20-13.60)/6.2
a = -6.4/6.2
a = -1.03 m/s²
Note: a is negative because, the hockey puck is decelerating.
Hence the average acceleration = -1.03 m/s²