Answer:
Q = 1267720 J
Explanation:
∴ QH2O = mCpΔT
∴ m H2O = 500 g
∴ Cp H2O = 4.186 J/g°C = 4.183 E-3 KJ/g°C
∴ ΔT = 120 - 50 = 70°C
⇒ QH2O = (500 g)(4.183 E-3 KJ/g°C)(70°C) = 146.51 KJ
∴ ΔHv H2O = 40.7 KJ/mol
moles H2O:
∴ mm H2O = 18.015 g/mol
⇒ moles H2O = (500 g)(mol/18.015 g) = 27.548 mol H2O
⇒ ΔHv H2O = (40.7 KJ/mol)(27.548 mol) = 1121.21 KJ
⇒ Qt = 146.51 KJ + 1121.21 KJ = 1267.72 KJ = 1267720 J
So potassium is more reactive than lithium because the outer electron of a potassium atom is further from its nucleus than the outer electron of a lithium atom. Hope this answers the question. Have a nice day. Feel free to ask more questions.
Answer:
1) When 6.97 grams of sodium(s) react with excess water(l), 56.0 kJ of energy are evolved.
2) When 10.4 grams of carbon monoxide(g) react with excess water(l), 1.04 kJ of energy are absorbed.
Explanation:
1) The following thermochemical equation is for the reaction of sodium(s) with water(l) to form sodium hydroxide(aq) and hydrogen(g).
2 Na(s) + 2H₂O(l) ⇒ 2NaOH(aq) + H₂(g) ΔH = -369 kJ
The enthalpy of the reaction is negative, which means that 369 kJ of energy are evolved per 2 moles of sodium. The energy evolved for 6.97 g of Na (molar mass 22.98 g/mol) is:

2) The following thermochemical equation is for the reaction of carbon monoxide(g) with water(l) to form carbon dioxide(g) and hydrogen(g).
CO(g) + H₂O(l) ⇒ CO₂(g) + H₂(g) ΔH = 2.80 kJ
The enthalpy of the reaction is positive, which means that 2.80 kJ of energy are absorbed per mole of carbon monoxide. The energy evolved for 10.4 g of CO (molar mass 28.01 g/mol) is:

Answer:
Mendel's gene involved in pea color decides whether the chlorophyll in the pea will be broken down or degraded. When this gene isn't working, the chlorophyll stays around and the pea is green. So in this case the recessive trait is indeed due to a broken gene.
Explanation:
The Kinitec Molecular Theory of Matter
Yes Kninetic energy