1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
STatiana [176]
3 years ago
8

The maximum tensile force a solid, cylindrical wire can withstand increases as the thickness of the wire increases.

Physics
1 answer:
agasfer [191]3 years ago
3 0

true

Explanation:

yes because as withstand increases as the thickness of the wire increases

You might be interested in
An electron accelerated from rest through a voltage of 780 v enters a region of constant magnetic field. part a part complete if
maxonik [38]
The electron is accelerated through a potential difference of \Delta V=780 V, so the kinetic energy gained by the electron is equal to its variation of electrical potential energy:
\frac{1}{2}mv^2 =  e \Delta V
where
m is the electron mass
v is the final speed of the electron
e is the electron charge
\Delta V is the potential difference

Re-arranging this equation, we can find the speed of the electron before entering the magnetic field:
v= \sqrt{ \frac{2 e \Delta V}{m} } = \sqrt{ \frac{2(1.6 \cdot 10^{-19}C)(780 V)}{9.1 \cdot 10^{-31} kg} }=1.66 \cdot 10^7 m/s


Now the electron enters the magnetic field. The Lorentz force provides the centripetal force that keeps the electron in circular orbit:
evB=m \frac{v^2}{r}
where B is the intensity of the magnetic field and r is the orbital radius. Since the radius is r=25 cm=0.25 m, we can re-arrange this equation to find B:
B= \frac{mv}{er}= \frac{(9.1 \cdot 10^{-31}kg)(1.66 \cdot 10^7 m/s)}{(1.6 \cdot 10^{-19}C)(0.25 m)} =3.8 \cdot 10^{-4} T
3 0
3 years ago
A projectile is shot at an angle 45 degrees to the horizontalnear the surface of the earth but in the absence of air resistance.
ivann1987 [24]

Answer:

v₂ = 176.24 m/s

Explanation:

given,

angle of projectile = 45°

speed = v₁ = 150 m/s

for second trail

speed = v₂ = ?

angle of projectile = 37°

maximum height attained formula,

H_{max}= \dfrac{v^2 sin^2(\theta)}{g}

now,

H_{max}= \dfrac{v_1^2 sin^2(\theta_1)}{g}

H_{max}= \dfrac{v_2^2 sin^2(\theta_2)}{g}

now, equating both the equations

\dfrac{v_2^2}{v_1^2}=\dfrac{sin^2(\theta_1)}{sin^2(\theta_2)}

\dfrac{v_2^2}{150^2}=\dfrac{sin^2(45^0)}{sin^2(37^0)}

   v₂² = 31061.79

   v₂ = 176.24 m/s

velocity of projectile would be equal to v₂ = 176.24 m/s

8 0
3 years ago
An astronaut is walking in space. Which of these would have the greatest speed as observed by the astronaut?
Aleks04 [339]
The answer is C) an electromagnetic wave

An electromagnetic wave, which includes electromagnetic radiation such as visible light, moves the fastest of all of the options listed by a significant margin, especially through space. In fact, light travelling through space is technically the theoretical limit of how fast something can travel. 
4 0
3 years ago
Read 2 more answers
Can A positively charged body attract another positively charged body​
andriy [413]

Like charges repel, unlike charges attract

Two protons will also tend to repel each other because they both have a positive charge. On the other hand, electrons and protons will be attracted to each other because of their unlike charges.

So I would say no, unless the two bodies are placed close to each other where one has much more charge than the other, then due to induction, force of attraction becomes more than the force of repulsion.

3 0
3 years ago
What quantity of heat is needed to convert 1 kg of ice at -13 degrees C to steam at 100 degrees C?
Effectus [21]

Answer:

Heat energy needed = 3036.17 kJ

Explanation:

We have

     heat of fusion of water = 334 J/g

     heat of vaporization of water = 2257 J/g

     specific heat of ice = 2.09 J/g·°C

     specific heat of water = 4.18 J/g·°C

     specific heat of steam = 2.09 J/g·°C

Here wee need to convert 1 kg ice from -13°C to vapor at 100°C

First the ice changes to -13°C from 0°C , then it changes to water, then its temperature increases from 0°C to 100°C, then it changes to steam.

Mass of water = 1000 g

Heat energy required to change ice temperature from -13°C to 0°C

          H₁ = mcΔT = 1000 x 2.09 x 13 = 27.17 kJ

Heat energy required to change ice from 0°C to water at 0°C

          H₂ = mL = 1000 x 334 = 334 kJ

Heat energy required to change water temperature from 0°C to 100°C  

          H₃ = mcΔT = 1000 x 4.18 x 100 = 418 kJ    

Heat energy required to change water from 100°C to steam at 100°C  

          H₄ = mL = 1000 x 2257 = 2257 kJ    

Total heat energy required

          H = H₁ +  H₂ + H₃ + H₄ = 27.17 + 334 + 418 +2257 = 3036.17 kJ

Heat energy needed = 3036.17 kJ

5 0
3 years ago
Other questions:
  • If the ankylosaurs starts running and accelerates at 1.3m/s^2 for 3 seconds how far does he make it before the velociraptor catc
    5·1 answer
  • Which explains why more energy is released in nuclear reactions than in chemical reactions? Chemical reactions are always endoth
    15·2 answers
  • Dizziness. Our balance is maintained, at least in part, by the endolymph fluid in the inner ear. Spinning displaces this fluid,
    15·1 answer
  • A sprinter accelerates from rest to 10.0 m/s in 1.35 s l. What is her acceleration?
    15·1 answer
  • Meclanical Energy
    9·1 answer
  • Rainbow can appear at night,they are called Moonbow?
    5·1 answer
  • Which of these is largest? A. asteroids B. comets C. meteoroids D. planets
    5·2 answers
  • Olaf is standing on a sheet of ice that covers the football stadium parking lot in Buffalo, New York; there is negligible fricti
    15·1 answer
  • A city of Punjab has a 15 percent chance of wet weather on any given day. What is the probability that it will take a week for i
    8·1 answer
  • The wavelength of red light is 7 x 10^-7 meter. Express this value in nanometers
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!