Answer:
(a) θ1 = 942.5rad, (b) θ2 = 13195 rad
Explanation:
(a) Given
ωo = 0 rad/s
ω = 3600rev/min = 3600×2(pi)/60 rad/s
ω = 377rad/s
t1 = 5s
θ1 = (ω + ωo)t/2
θ1 = (377 +0)×5/2
θ1 = 942.5 rads
(b) ωo = 377rad/s
ω = 0 rad/s
t2 = 70s
θ2 = (ω + ωo)t/2
θ2 = (377 +0)×70/2
θ2 = 13195 rad
Answer:
240 ft
Explanation:
t = Time taken
u = Initial velocity = 96 ft/s
v = Final velocity
s = Displacement
a = Acceleration = 12 m/s² on Mars 32 ft/s² on Earth negative due to upward direction
Mars

Earth

Differentiating the first equation with respect to time we get

Equating with zero

Differentiating the second equation with respect to time we get
Equating with zero

Applying the time taken to the above equations, we get


Difference in height = 384-144 = 240 ft
The stone will travel 240 ft higher on Mars
In order to tell a river lock attendant that you wish to go through the lock, you should <span>sound one prolonged blast followed by one short blast.
You should wait about 400 feet away from the lock and wait for the flashing light signal that allows you to enter.
Also note that </span><span>commercial traffic always have the first priority in entering the locks.</span>
Answer:first of all what is your question and i can give and example which is Use them when you have 2 forces named Fa & FF or Fg & Ff acting in opposite directions on an object and you need to know the resultant of your 2 forces.
Explanation:
i searched it up
Answer:
346.66 Hz
Explanation:
= Length of string which is unfingered = l
= Length of string which is vibrate when fingered = 
= Unfingered frequency = 260 Hz
= Fingered frequency
Frequency is inversely proportional to length

So,

The frequency of the fingered string is 346.66 Hz