Answer:
Option A
Explanation:
The Equation represents the displacement of the object which is represented by x

so,
means when time is zero so we replace t with zero in the equation,

now for v which is velocity we need to differentiate the function as the formula for velocity is rate of change of displacement over time so we derivate the equation once and get,

now for
we insert t = 0 and get

now for a which is acceleration the formula of acceleration is rate of change of velocity over time, so we differentiate the the equation of v(velocity) once or the equation of x(displacement) twice so now we get,

so Option A is your answer.
Remember derivative of a constant is always zero because a constant value has no rate of change has its a constant hence the derivative is 0
Given:
Water, 2 kilograms
T1 = 20 degrees Celsius, T2 = 100
degrees Celsius.
Required:
Heat produced
Solution:
Q (heat) = nRT = nR(T2 = T1)
Q (heat) = 2 kilograms (4.184 kiloJoules
per kilogram Celsius) (100 degrees Celsius – 20 degrees Celsius)
<u>Q (heat) = 669.42 Joules
</u>This is the amount of heat
produced in boiling 2 kg of water.
The equation that represents the principle of the lever balance is:
- W₁ + W₂ = W3 + W4; option A.
<h3>What is the principle of moments?</h3>
The principle of moments states when a body is in equilibrium, the sum of the clockwise moment about a point equals the sum of anticlockwise moment about that point.
A see-saw represents a balanced system of moments.
The sum of clockwise moment = The sum of anticlockwise moments.
Assuming W1 and W2 are clockwise moments and W3 and W4 are anticlockwise moments.
The equation will b: W₁ + W₂ = W3 + W4
In conclusion, a balanced see-saw illustrates the principle of the lever balance.
Learn more about principle of moments at: brainly.com/question/20519177
#SPJ1
(30, 5)
(10, 1)
change of y / change of x
= (30 - 10) / (5 - 1)
= 20 /4
= 5
Answer:
Static energy
Explanation:
Think of it as a balloon rubbing against your hair, the two attractions of friction causes Static energy.