Based on internet sources, <span>the basic formulas are: v^2/r = (at)^2/r = a ==> at^2 = r ==> t = sqrt(r/a).
</span>
<span>Assuming the missing units are mutually compatible, as in the following example, they don't need to be known. </span>
<span>Acceleration = 1.6 cramwells/s^2 </span>
<span>Radius = 150 cramwells </span>
<span>t = sqrt(150/1.6) = 9.68 s.
I hope this helps.</span>
Answer:
The answer is given below
Explanation:
u is the initial velocity, v is the final velocity. Given that:

a)
The final velocity of cart 1 after collision is given as:

The final velocity of cart 2 after collision is given as:

b) Using the law of conservation of energy:

I think its " both have level surfaces"
)
5
-5
1 2 3
4
5
Other than at t = 0, when is the velocity of
the object equal to zero?
1. 5.0 s
2. 4.0 s
3. 3.5 s
4. At no other time on this graph. correct
5. During the interval from 1.0 s to 3.0 s.
Explanation:
Since vt =
Z t
0
a dt, vt
is the area between
the acceleration curve and the t axis during
the time period from 0 to t. If the area is above
the horizontal axis, it is positive; otherwise, it
is negative. In order for the velocity to be zero
at any given time t, there would have to be
equal amounts of positive and negative area
between 0 and t. According to the graph, this
condition is never satisfied.
005 (part 1 of 1) 0 points
Identify all of those graphs that represent motion
at constant speed (note the axes carefully).
a) t
x
b) t
v
c) t
a
d) t
v
e) t
a
Answer: anlien, enemy gnome, spaceship
Explanation: