If it’s loud enough for your family to hear it, it’s best you turn it down. It could cause permanent damage to your ear drums if it’s loud enough and you could start to lose your hearing. So if your family were to tell you to turn it down, you should probably just turn it down!
Explanation:
The attached figure shows data for the cart speed, distance and time.
For low fan speed,
Distance, d = 500 cm
Time, t = 7.4 s
Average velocity,

Acceleration,

For medium fan speed,
Distance, d = 500 cm
Time, t = 6.4 s
Average velocity,

Acceleration,

For high fan speed,
Distance, d = 500 cm
Time, t = 5.6 s
Average velocity,

Acceleration,

Hence, this is the required solution.
By law of refraction we know that image position and object positions are related to each other by following relation

here we know that



now by above formula


so apparent depth of the bottom is seen by the observer as h = 3.39 cm
Answer:
W = F * s
Work done equals applied force * distance traveled
Apparent weight = M g (1 - sin θ) since some of applied force will lighten sled
μ = coefficient of kinetic friction
F cos θ = force applied to motion of sled
s = distance traveled
[μ M g (1 - sin θ)] cos θ * s = work done in moving sled
Note that F = μ M g if applied force is in the horizontal direction
Answer:
0.0928km/min (4dp)
Explanation:
To find the jogger's speed in km per minute, we just need to divide the number of km jogged by the time in minutes it took to jog that distance. This will give us the distance they jogged every minute which is their speed.
4km in 32 minutes:
4/32 = 0.125km/min
2km in 22 minutes:
2/22 = 0.091 (3dp)km/min
1km in 16 minutes:
0.0625km/min
Now to find the average speed of these 3 speeds, we just add them all together and divide by how many values there are (3 values).
Average (mean) = 
Average = 0.2785/3
Average speed of jogger = 0.0928 (4dp) km/min
Hope this helped!