The car’s velocity at the end of this distance is <em>18.17 m/s.</em>
Given the following data:
- Initial velocity, U = 22 m/s
- Deceleration, d = 1.4

To find the car’s velocity at the end of this distance, we would use the third equation of motion;
Mathematically, the third equation of motion is calculated by using the formula;

Substituting the values into the formula, we have;

<em>Final velocity, V = 18.17 m/s</em>
Therefore, the car’s velocity at the end of this distance is <em>18.17 m/s.</em>
<em></em>
Read more: brainly.com/question/8898885
Mass of yellow train, my = 100 kg
Initial Velocity of yellow train, = 8 m/s
mass of orange train = 200 kg
Initial Velocity of orange train = -1 m/s (since it moves opposite direction to the yellow train, we will put negative to show the opposite direction)
To calculate the initial momentum of both trains, we will use the principle of conservation of momentum which
The sum of initial momentum = the sum of final momentum
Since the question only wants the sum of initial momentum,
(100)(8) + (200)(-1) = 600 m/s
Answer:corrosion (i believe)
Explanation:
Weather balloons are filled with only a small amount of helium because the __Volume__. of the balloon will increase as the air pressure decreases at higher altitudes.
Answer:
1.Stronger bones 2.Joint flexibility