Answer:
6.00004682 lolll
Step-by-step explanation:
Answer: Hope this helps <3
Step-by-step explanation:
Answer:
Step-by-step explanation:
Given
Quadrilateral QRST
Q (1, 2), R (3, 4), S (5, 6), and T (2, 7)
Dlated Factor = 2
Required
Coordinates of quadrilateral Q′R′S′T′
<em>Provided that a quadrilateral is dilated with the center of dilation at the origin; the new dilated shape is simply the multiplication of the dilation factor by the coordinates of the original shape;</em>
<em />
In other words,
Q'R'S'T' = Dilation factor * QRST
When Q = (1,2)
Q' = 2 * (1,2)
Q' = (2,4)
When R = (3,4)
R' = 2 * (3,4)
R' = (6,8)
When S = (5,6)
S' = 2* (5,6)
S' = (10,12)
When T= (2,7)
T' = 2 * (2,7)
T' = (4,14)
Hence, the coordinates of Q'R'S'T' is
Q' = (2,4); R' = (6,8); S' = (10,12); T' = (4,14)
Answer:
i think it's c
Step-by-step explanation:
a. <u>2</u><u>/</u><u>1</u><u>00</u><u> </u><u>×</u><u> </u><u>1</u><u>5</u><u>0</u><u>=</u><u> </u><u>3</u><u>. </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u>b</u><u>. </u><u> </u><u>100×</u><u>4</u><u>0</u><u>0</u><u>=</u><u>4</u><u>0</u><u>0</u><u>0</u><u>0</u><u>. </u><u> </u><u> </u><u> </u><u> </u><u>c</u><u>. </u><u> </u><u> </u><u>6</u><u>/</u><u>100 </u><u>×</u><u>6</u><u>0</u><u>=</u><u> </u><u>1</u><u>.</u><u>2</u><u> </u><u>×</u><u>3</u><u>=</u><u>3</u><u>.</u><u>6</u><u>. </u><u> </u><u> </u><u> </u><u> </u><u> </u><u>d</u><u>. </u><u>6</u><u>9</u><u>×</u><u>5</u><u>0</u><u>=</u><u>3</u><u>4</u><u>0</u><u>0</u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u>so </u><u>answer</u><u> </u><u>c</u><u>. </u><u> </u><u> </u><u> </u><u> </u><u> </u>
Answer:
The correct option is B.
Step-by-step explanation:
Given information: AB\parallel DCAB∥DC and BC\parallel ADBC∥AD .
Draw a diagonal AC.
In triangle BCA and DAC,
AC\cong ACAC≅AC (Reflexive Property of Equality)
\angle BAC\cong \angle DCA∠BAC≅∠DCA ( Alternate Interior Angles Theorem)
\angle BCA\cong \angle DAC∠BCA≅∠DAC ( Alternate Interior Angles Theorem)
The ASA (Angle-Side-Angle) postulate states that two triangles are congruent if two corresponding angles and the included side of are congruent.
By ASA postulate,
\triangle BCA\cong \triangle DAC△BCA≅△DAC
Therefore option B is correct