A Calorie unit used in food is equal to the amount of energy necessary to raise the temperature of 1 kilogram of water by <u>1</u> degrees Celsius.
<h3>What is One Calorie ?</h3>
The amount of heat energy required to raise the temperature by 1 gram of water through 1°C is known as One Calorie.
1 Calorie = 4.18 J
Thus from the above conclusion we can say that A Calorie unit used in food is equal to the amount of energy necessary to raise the temperature of 1 kilogram of water by <u>1</u> degrees Celsius.
Learn more about the One calorie here: brainly.com/question/1061571
#SPJ4
K:
m=155g
M=39g/mol
n = 155g / 39g/mol ≈ 3,97mol
KNO₃:
m=122g
M=101g/mol
n = 122g/101g/mol = 1,21mol
2K + 10KNO₃ ⇒ 6K₂O + N₂
2mol : 10mol
3,97mol : 1,21mol
limiting reagent
KNO₃ is limiting reagent
The answer is; liquid phase
The characteristics described in the question are those of a liquid. The forces between liquid particles are weaker than the forces between solid particles because the particles are further apart. The particles are not held in a fixed position in the structure hence it can flow and take the shape of the container in which it is in.
Answer:
The molarity of the formed CaBr2 solution is 0.48 M
Explanation:
Step 1: Data given
Number of moles CaBr2 = 0.72 moles
Volume of water = 1.50 L
Step 2: Calculate the molarity of the solution
Molarity of CaBr2 solution = moles CaBr2 / volume water
Molarity of CaBr2 solution = 0.72 moles / 1.50 L
Molarity of CaBr2 solution = 0.48 mol / = 0.48 M
The molarity of the formed CaBr2 solution is 0.48 M