<span>Neutrons to protons.
Neutrons and protons are tiny particles that are within the nucleus. Neutrons and protons make up the nucleus of the cell and the ratio of neutrons determine the stability of the atomic nuclei. The nucleus will become unstable if the ratio of neutrons to protons are not within the appropriate amount.</span>
Answer:
Please make it full I'm not seeing it
Answer:
You can do that yourself, but there's a example question below. And, if for example, I just answer your question and you don't even try to answer. it dosent matter.
Explanation:Force=Mass x Acceleration -or- F=ma
where F is the force, m is the mass, and a is the acceleration. The units are Newtons (N) for force, kilograms (kg) for mass, and meters per second squared (m/s2) for acceleration. The other forms of the equation can be used to solve for mass or acceleration.
m=F/a and a=F/m Example:
Engineers at the Johnson Space Center must determine the net force needed for a rocket to achieve an acceleration of 70 m/s2. If the mass of the rocket is 45,000 kg, how much net force must the rocket develop?
Using Newton's second law, F=ma
F=(45,000 kg)(70 m/s2) = 3,150,000 kg m/s2 F=3,150,000 N Note that the units kg m/s2 and newtons are equivalent; that is, 1 kg m/s2
Answer:- 10 L of ethane.
Solution:- The given balanced equation is:

From this equation, ethane and oxygen react in 2:7 mol ratio, the ratio of volumes would also be same if they are at same temperature and pressure.
Since 14 L of each gas are taken, the oxygen will be the limiting reactant and ethane will be the excess reactant. Let's calculate the volume of ethane used:

= 
From above calculations, 4 L of ethane are used. So, excess volume of ethane left after the completion of reaction = 14 L - 4 L = 10 L
Hence, 10 L of ethane will be remaining.