Answer:
6 gallons
Explanation:
At 30 mph, the fuel mileage is 25 mpg.
After 5 hours, the distance traveled is:
30 mi/hr × 5 hr = 150 mi
The amount of gas used is:
150 mi × (1 gal / 25 mi) = 6 gal
Answer:
156.8 Watts
Explanation:
From the question given above, the following data were obtained:
Mass (m) = 10 kg
Height (h) = 8 m
Time (t) = 5 s
Power (P) =?
Next, we shall determine the energy used by the motor to raise the block. This can be obtained as follow:
Mass (m) = 10 kg
Height (h) = 8 m
Acceleration due to gravity (g) = 9.8 m/s²
Energy (E) =?
E = mgh
E = 10 × 9. 8 × 8
E = 784 J
Finally, we shall determine the power output of the motor. This can be obtained as illustrated below:
Time (t) = 5 s
Energy (E) = 784 J
Power (P) =?
P = E/t
P = 784 / 5
P = 156.8 Watts
Therefore, the power output of the motor is 156.8 Watts
La masa molar de 65 litros de SO2 es igual a 64,1 g/mol.
<h3>Masa molar</h3>
La masa molar de un compuesto depende de su masa presente en 1 mol, entonces:

Para calcular la masa molar de un compuesto, simplemente suma las masas de cada elemento en el compuesto, así:


Así, la masa molar de 65 litros de SO2 es igual a 64,1 g/mol.
Obtenga más información sobre la masa molar en: brainly.com/question/17109809
Given:
Gasoline pumping rate, R = 5.64 x 10⁻² kg/s
Density of gasoline, D = 735 kg/m³
Radius of fuel line, r = 3.43 x 10⁻³ m
Calculate the cross sectional area of the fuel line.
A = πr² = π(3.43 x 10⁻³ m)² = 3.6961 x 10⁻⁵ m²
Let v = speed of pumping the gasoline, m/s
Then the mass flow rate is
M = AvD = (3.6961 x 10⁻⁵ m²)*(v m/s)*(735 kg/m³) = 0.027166v kg/s
The gasoline pumping rate is given as 5.64 x 10⁻² kg/s, therefore
0.027166v = 0.0564
v = 2.076 m/s
Answer: 2.076 m/s
The gasoline moves through the fuel line at 2.076 m/s.