Answer:
1) P₁ = -2 D, 2) P₂ = 6 D
Explanation:
for this exercise in geometric optics let's use the equation of the constructor
where f is the focal length, p and q are the distance to the object and the image, respectively
1) to see a distant object it must be at infinity (p = ∞)
q = f₁
2) for an object located at p = 25 cm
We can that in the two expressions we have the distance to the image, this is the distance where it can be seen clearly in general for a normal person is q = 50 cm
we substitute in the equations
1) f₁ = -50 cm
2)
= 0.06
f₂ = 16.67 cm
the expression for the power of the lenses is
P = 
where the focal length is in meters
1) P₁ = 1/0.50
P₁ = -2 D
2) P₂ = 1 /0.16667
P₂ = 6 D
When the applied force increases to 5 N, the magnitude of the block's acceleration is 1.7 m/s².
<h3>
Frictional force between the block and the horizontal surface</h3>
The frictional force between the block and the horizontal surface is determined by applying Newton's law;
∑F = ma
F - Ff = ma
Ff = F - ma
Ff = 4 - 2(1.2)
Ff = 4 - 2.4
Ff = 1.6 N
When the applied force increases to 5 N, the magnitude of the block's acceleration is calculated as follows;
F - Ff = ma
5 - 1.6 = 2a
3.4 = 2a
a = 3.4/2
a = 1.7 m/s²
Thus, when the applied force increases to 5 N, the magnitude of the block's acceleration is 1.7 m/s².
Learn more about frictional force here: brainly.com/question/4618599
Polyunsaturated fatty acids which is Omega-3 fatty acids.
Integrating the velocity equation, we will see that the position equation is:

<h3>How to get the position equation of the particle?</h3>
Let the velocity of the particle is:

To get the position equation we just need to integrate the above equation:


Then:


Replacing that in our integral we get:


Where C is a constant of integration.
Now we remember that 
Then we have:

To find the value of C, we use the fact that f(0) = 0.

C = -1 / 3
Then the position function is:

Integrating the velocity equation, we will see that the position equation is:

To learn more about motion equations, refer to:
brainly.com/question/19365526
#SPJ4