<span>The rate of reaction may be expressed as a unit of quantity divided by a unit of time. The only expression that has a quantity divided by time is the first one mL / s (i.e. milliliter per second), so the answer is the first option, mL/s.</span><span />
Answer: 25.8 g of
will be produced from the decomposition of 73.4 g of
Explanation:
To calculate the moles :

The balanced chemical reaction is:
According to stoichiometry :
2 moles of
produce = 3 moles of 
Thus 0.242 moles of will produce=
of 
Mass of
= 
Thus 25.8 g of
will be produced from the decomposition of 73.4 g of
most events like the rising and setting of the Sun were used a natural measurement of time until recently.
Solar time, which is based on the motion of the Sun, is not the only way of measuring time, however. One might keep track of the regular appearance of the full Moon. That event occurs once about every 29.5 solar days. The time between appearances of new moons, then, could be used to define a month.
One also can use the position of the stars for measuring time. The system is the same as that used for the Sun, since the Sun itself is a star. All other stars also rise and set on a regular basis.
Although any one of these systems is a satisfactory method for measuring some unit of time, such as a day or a month, the systems may conflict with each other. It is not possible, for example, to fit 365 solar days into 12 or 13 lunar months exactly. This problem creates the need for leap years
Read more: http://www.scienceclarified.com/Ti-Vi/Time.html#ixzz5e1E705sr
I abbreviated most of it but there is a ton more at this link if you still need more.
The actual formula for volume for a cube is the length multiplied by the width and then multiplied by the height. Since all three measurements are the same, the formula results in the measurement of one side cubed. For the example, 5^3 is 125 cm^3. Multiply the volume by the known density, which is the mass per volume.
The soda can from the car will lose CO2 more quickly. This is because of the kinetic energy and behavior of gas molecules under different temperatures. CO2 is more soluble in cold temperatures than hot. Cold temperatures minimize the kinetic energy of gas molecules; thus, preventing the gas from escaping the soda. This is why soda that comes from the refrigerator has more fizz or spirit than soda at room temperature.