Answer:
After 2.0 minutes the concentration of N2O is 0.3325 M
Explanation:
Step 1: Data given
rate = k[N2O]
initial concentration of N2O of 0.50 M
k = 3.4 * 10^-3/s
Step 2: The balanced equation
2N2O(g) → 2 N2(g) + O2(g)
Step 3: Calculate the concentration of N2O after 2.0 minutes
We use the rate law to derive a time dependent equation.
-d[N2O]/dt = k[N2O]
ln[N2O] = -kt + ln[N2O]i
⇒ with k = 3.4 *10^-3 /s
⇒ with t = 2.0 minutes = 120s
⇒ with [N2O]i = initial conc of N2O = 0.50 M
ln[N2O] = -(3.4*10^-3/s)*(120s) + ln(0.5)
ln[N2O] = -1.101
e^(ln[N2O]) = e^(-1.1011)
[N2O} = 0.3325 M
After 2.0 minutes the concentration of N2O is 0.3325 M
Answer:
6.67 M
Explanation:
Molarity = 
<em>Convert 200g NaOH to moles. Convert 750 mL to L.</em>
200 g NaOH x (1 mol/39.998 g) = 5.00025... mol NaOH
750 mL x (1 L/1000 mL) = 0.750 L
<em>Substitute values into the equation.</em>
Molarity = 
Molarity = 6.667... M
Molarity = 6.67 M
The heat lost is 
The heat lost when the ice is cooled from 400k to 263K can be calculated using the formula of heat transfer.
<h3>Heat Transfer</h3>
This is the heat transferred from a body of higher temperature to a body of lower temperature.

- Q = Heat Transfer
- m = mass = 1277g
- ΔT = change in temperature

We converted the temperature from kelvin scale into Celsius scale and find the change in temperature.
Solving for heat transfer

The heat loss is approximately 
Learn more on heat transfer here;
brainly.com/question/16055406
The answer is C to achieve an octet of valence electrons so they become stable
Answer:
sulfuric acid produces sulfate salts
please make me brainliest