-the contact force
-weight of an object
-the surfaces in contact (coefficient of friction).
these are what I think are the answer
Answer:
t = 3 [s]
Explanation:
To solve this problem we must use the following equation of kinematics.

where:
Vf = final velocity [m/s]
Vo = initial velocity = 15 [m/s]
g = gravity acceleration = 10 [m/s²]
t = time [s]
Now replacing we have:
![0 = 15 -10*t\\10*t=15\\t= 1.5[s]](https://tex.z-dn.net/?f=0%20%3D%2015%20-10%2At%5C%5C10%2At%3D15%5C%5Ct%3D%201.5%5Bs%5D)
Note: In the equation above the gravity acceleration is negative, because the movement of the ball bearing is pointing againts the gravity acceleration.
The time calculated is only when the ball bearing reaches the highest elevation, and it will take the same time for descending, therefore the total time is:
t = 1.5 + 1.5 = 3 [s]
My Anonymuos friend, I could not agree more with your statement.
Truer words have rarely if ever been expressed.
The Milky Way is a spiral and most smaller galaxies are large clouds. We also have a supermassive black hole in our core, most spiral galaxies have one.
Answer:
Block A
Explanation:
Block A will float higher in the water compared to the second Block.
The density of water is 1g/cm³.
According to the principle of floatation "an object that floats in a liquid will displace equal amount of fluid to the weight of the object".
A body will become more submerged in water if it has more density because density is the mass per volume of body.
An object with a higher density than another will sink in the liquid of the one with lesser density.
- Object A has lesser density and will float higher up and displace very little water.
- Object B has higher density and will be more submerged.