Answer:
4.1 m
Explanation:
Given :
Mass of the block = m = 2 kg.
Initial velocity =
= 8 m/s
Angle of the incline = α = 30°
Coefficient of friction = μ = 0.35
Distance moved up the incline is calculated using the work energy theorem.
Work done by the net force = change in kinetic energy of the object.
Net work = work done by friction + work done by the gravity component.
(- mg sin 30 - μ mg cos 30 ) d = 
m cancels out when divided on both sides with m.
- [(9.8 sin 30 - ( 0.35 × 9.8 × cos 30) ] d = 1/2 ( 0² - 8² )
⇒ -7.87 d = -32
⇒ Distance traveled up the incline = d = 4.0658 m = 4.1 m
Answer: no
Explanation: we need a picture
The populations of insects increases I believe? Please correct me if I’m wrong
Answer:
a) v = 88.54 m/s
b) vf = 26.4 m/s
Explanation:
Given that;
m = 1400.0 kg
a)
by using the energy conservation
loss in potential energy is equal to gain in kinetic energy
mg × ( 3200-2800) = 1/2 ×m×v²
so
1400 × 9.8 × 400 = 0.5 × 1400 × v²
5488000 = 700v²
v² = 5488000 / 700
v² = 7840
v = √7840
v = 88.54 m/s
b)
Work done by all forces is equal to change in KE
W_gravity + W_non - conservative = 1/2×m×(vf² - vi²)
we substitute
1400 × 9.8 × ( 3200-2800) - (5 × 10⁶) = 1/2 × 1400 × (vf² -0 )
488000 = 700 vf²
vf² = 488000 / 700
vf² = 697.1428
vf = √697.1428
vf = 26.4 m/s
Answer:
I need an image, but if you're talking about Potential and Kinetic energy, I will determine for you:
Explanation:
Potential Energy: stored energy that depends upon the relative position of various parts of a system.
Kinetic Energy: the form of energy that an object or a particle has by reason of its motion.
Therefore, if the skier is on top of the mountain, they would have potential energy since their energy from the ground to the top of the surface is stored. But, if the skier is in motion/mid-air from the top of a mountain, their energy is kinetic (in motion) because their stored energy (potential) is released as they step off of the surface.