Uhh there is only 1 answer choice sooo
Answer:
1.68 × 10²³ Molecules
Explanation:
As we know that 1 mole of any substance contains exactly 6.022 × 10²³ particles which is also called as Avogadro's Number. So in order to calculate the number of particles (molecules) contained by 0.280 moles of Br₂, we will use following relation,
Moles = Number of Molecules ÷ 6.022 × 10²³ Molecules.mol⁻¹
Solving for Number of Molecules,
Number of Molecules = Moles × 6.022 × 10²³ Molecules.mol⁻¹
Putting values,
Number of Molecules = 0.280 mol × 6.022 × 10²³ Molecules.mol⁻¹
Number of Molecules = 1.68 × 10²³ Molecules
Hence,
There are 1.68 × 10²³ Molecules present in 0.280 moles of Br₂.
Answer:
5.41 g
Explanation:
Considering:
Or,
Given :
For tetraphenyl phosphonium chloride :
Molarity = 33.0 mM = 0.033 M (As, 1 mM = 0.001 M)
Volume = 0.45 L
Thus, moles of tetraphenyl phosphonium chloride :
Moles of TPPCl = 0.01485 moles
Molar mass of TPPCl = 342.39 g/mol
The formula for the calculation of moles is shown below:
Thus,
Mass of TPPCl = 5.0845 g
Also,
TPPCl is 94.0 % pure.
It means that 94.0 g is present in 100 g of powder
5.0845 g is present in 5.41 g of the powder.
<u>Answer - 5.41 g</u>
Answer:
Probably around 6 because the ph of hydrochloric acid is 3
Explanation:
Answer:
Ammonium bromide can be prepared by the direct action of hydrogen bromide on ammonia. It can also be prepared by the reaction of ammonia with iron(II) bromide or iron(III) bromide, which may be obtained by passing aqueous bromine solution over iron filings.
Explanation:
please mark me as brainliest thank you