Answer:
Explanation:
The <em>pH</em> of a solution is a measure of the <em>molar concentration of </em><em>H₃O⁺</em> ions in the solution.
The mathematical expresssion that states the relation between the molar concentration of H₃O⁺ ions and the pH of the solution is:
This is pH is numerically equal to the negative decimal logarithm of the molar concentration of H₃O⁺.
The square brackets are used to indicate molar concentration.
Thus:
- pH = - log [H₃O⁺] ← equation
- 3.120 = -log [H₃O⁺] ← substituting values
- - 3.120 = log [H₃O⁺] ← product property of the multiplication
← antilogarithm property
- [H₃O⁺] = 7.586×10⁻⁴ M ← result
Answer:
The answer is
<h2>155 g</h2>
Explanation:
The mass of a substance when given the density and volume can be found by using the formula
<h3>mass = Density × volume</h3>
From the question
volume of bromine = 50 mL
density = 3.10 g/cm³
It's mass is
mass = 50 × 3.10
We have the final answer as
<h3>155 g</h3>
Hope this<u> </u>helps you
Answer: 6 atoms in total
Explanation:
It has one sodium atom, one hydrogen atom, one carbon atom, and three oxygen atoms.
Answer:
The transition from lower energy level to higher energy level require a gain of energy.
Explanation:
When transition occur from lower energy level to higher energy level require a gain of energy. Electron could not jump unto higher energy level without gaining thew energy.
When electron jump into lower energy level from high energy level it loses the energy.
For example electron when jumped from 2nd to 3rd shell it gain energy and when in return back to 2nd shell from 3rd shell it loses energy.
The process is called excitation and de-excitation.
Excitation:
When the energy is provided to the atom the electrons by absorbing the energy jump to the higher energy levels. This process is called excitation. The amount of energy absorbed by the electron is exactly equal to the energy difference of orbits.
De-excitation:
When the excited electron fall back to the lower energy levels the energy is released in the form of radiations. this energy is exactly equal to the energy difference between the orbits. The characteristics bright colors are due to the these emitted radiations. These emitted radiations can be seen if they are fall in the visible region of spectrum.