It's C. Compounds are broken down.
Answer:
In an experiment, a student transferred 4.50 mL of a liquid into a pre-weighed beaker (the weight of which was determined to be 35.986 g ).
Explanation:
<em>HOPE</em><em> </em><em>THIS</em><em> </em><em>HELPS</em><em> </em><em>YOU</em><em> </em>
<em>❤</em><em> </em><em>❤</em><em> </em><em>❤</em><em> </em><em>❤</em><em> </em><em>❤</em><em> </em><em>❤</em><em> </em><em>❤</em><em> </em><em>❤</em><em> </em>
Answer:
1s22s22p6: Neon (Ne)
1s22s22p63s23p3: Phosphorous (P)
1s22s22p63s23p64s1: Potassium (K)
1s22s22p63s23p64s2(im not sure what 308 is supposed to be): Calcium (Ca)
1s22s22p63s23p64s23d104p65s24d3: there is no pure element that ends 4d3 that I know of so this can either be Zirconium(Zr) if it ends in 4d2 or Niobium (Nb) if it ends in 4d4
Explanation:
you can look at the periodic table and the trends to find the rough idea of where the electron configuration ends, there are helpful articles and images on these, i attached an image that may help. After that you can look at the atomic number to find the number of electrons for a pure element and use the electron subshell pattern thing to find the exact number
Answer: In physics, potential energy is the energy held by an object because of its position relative to other objects, stresses within itself, its electric charge, or other factors.
Explanation:
1. A thermodynamic quantity that is the difference between the internal energy of a system and the product of itsabsolute temperature and entropy; the capacity of a system to do work, as in an exothermic chemical reaction.<span>2. </span>A thermodynamic quantity that is the difference between the enthalpy and the product of the absolute temperatureand entropy of a system. Also called <span>Gibbs free energy</span>.