When a carnivore eats an herbivore
It would be C! An energy change. Usually it changes heat - could be less or more.
I hope all is well, and you pass! Good luck, rockstar! You got this. (:
Answer: <u>Endonuclease enzymes used in molecular biology that cut DNA at specified points.</u>
Explanation:
Enzymes are specific protein types which bind to a substrate within a reaction, to increase the rate of reaction within the solution- they speed up the rate of reaction.
Restriction enzymes are bacteria-derived enzymes; these make cuts on deoxyribonucleic acid molecules or DNA. These are also called restriction endonucleases. They are utilized in molecular biology for DNA cloning and sequencing and cut DNA into smaller pieces called fragments.
Restriction enzymes make directed cuts on DNA molecules. They precisely target sites on DNA to produce mostly identical or homogenous, discrete fragments of equal sizes, producing blunt or sticky ends. In order to do this, they recognize sequences of nucleotides that correspond with a complementary sequence on the endonuclease called restriction sites.
There are several kinds that may require cofactors (chemical or metallic compounds that aid in enzyme activity) :
- Type I: cleave far away from the recognition site; require ATP and SAMe S-Adenosyl-L-Methionine
- Type II: cleave near to the site; require Magnesium
- Type III: cleave near to the site; require ATP which is not hydrolysed but SAMe S-Adenosyl-L-Methionine is optional
- Type IV: cleavage targeted to DNA that have undergone post transcriptional modification through certain types of methylation (addition of a methyl group)
Answer:
2.82 L
T₁ = 303 K
T₂ = 263 K
The final volume is smaller.
Explanation:
Step 1: Given data
- Initial temperature (T₁): 30 °C
- Initial volume (V₁): 3.25 L
- Final temperature (T₂): -10 °C
Step 2: Convert the temperatures to Kelvin
We will use the following expression.
K = °C + 273.15
T₁: K = 30°C + 273.15 = 303 K
T₂: K = -10°C + 273.15 = 263 K
Step 3: Calculate the final volume of the balloon
Assuming constant pressure and ideal behavior, we can calculate the final volume using Charles' law. Since the temperature is smaller, the volume must be smaller as well.
V₁/T₁ = V₂/T₂
V₂ = V₁ × T₂/T₁
V₂ = 3.25 L × 263 K/303 K = 2.82 L