Answer:
Person B has four times the power output of person A.
A pendulum is not a wave.
-- A pendulum doesn't have a 'wavelength'.
-- There's no way to define how many of its "waves" pass a point
every second.
-- Whatever you say is the speed of the pendulum, that speed
can only be true at one or two points in the pendulum's swing,
and it's different everywhere else in the swing.
-- The frequency of a pendulum depends only on the length
of the string from which it hangs.
If you take the given information and try to apply wave motion to it:
Wave speed = (wavelength) x (frequency)
Frequency = (speed) / (wavelength) ,
you would end up with
Frequency = (30 meter/sec) / (0.35 meter) = 85.7 Hz
Have you ever seen anything that could be described as
a pendulum, swinging or even wiggling back and forth
85 times every second ? ! ? That's pretty absurd.
This math is not applicable to the pendulum.
Answer: minimum speed of launch must be 7.45m/s
Explanation:
Given the following:
Height or distance (s) = 2.83m
The final velocity(Vf) at maximum height = 0
Upward motion, acceleration due to gravity(g) us negative = -9.8m/s^2
From the 3rd equation of motion:
V^2 = u^2 - 2gs
Where V = final velocity
u = initial velocity
Therefore, u = Vi
u = √Vf^2 - 2gs
u = √0^2 - 2(-9.8)(2.83)
u = √0 + 55.468
u = √55.468
u = 7.4476 m/s
u = 7.45m/s
Answer:
7.07 hours
Explanation:
divide the distance by the speed
so in this case, divide 672 by 95
Answer:
P = 7196 [kPa]
Explanation:
We can solve this problem using the expression that defines the pressure depending on the height of water column.
P = dens*g*h
where:
dens = 1028 [kg/m^3]
g = 10 [m/s^2]
h = 700 [m]
Therefore:
P = 1028*10*700
P = 7196000 [Pa]
P = 7196 [kPa]