Dddddddddddddddddddddddddddddddddddddddddddddddddddddd
Answer:
An asteroid is a minor planet of the inner Solar System. Historically, these terms have been applied to any astronomical object orbiting the Sun.
Answer:
position as a function of time is y = 0.05 × cos(9.9)t
Explanation:
given data
mass = 5 kg
length = 10 cm = 0.1 m
displaced = 5 cm
to find out
position as a function of time
solution
we will apply here equilibrium that is
mass × g = k × length
put here value and find k
k = 
k = 490 N/m
and ω is
ω = 
ω = 
ω = 9.9
so here position w.r.t time is
y = 0.05 × cosωt
y = 0.05 × cos(9.9)t
so position as a function of time is y = 0.05 × cos(9.9)t
Work = (force) x (distance)
1,008 J = (force) x (28 m)
Divide each side by 28m : (1,008 kg-m²/sec²) / (28 m) = force
Force = 36 kg-m/s² = 36 Newtons .
(about 8.1 pounds)
It doesn't matter what that force accomplishes.
It could be moving a brick, lifting a fish, or pushing a little red wagon.
In order to do 1,008 joules of work in 28 meters, it takes 36 N of force,
in the direction of the 28 meters.
Answer:
126 mWb
Explanation:
Given that:
length (L) = 50 cm = 0.5 m, radius (r) = 5 cm = 0.05 m, current (I) = 10 A, number of turns (N) = 800 turns.
We assume that the magnetic field in the solenoid is constant.
The magnetic flux is given as:
