Answer:
The answer is below
Step-by-step explanation:
A polynominal function that describes an enclosure is v(x)=1500x-x2 where x is the length of the fence in feet what is the maximum area of the enclosure
Solution:
The maximum area of the enclosure is gotten when the differential with respect to x of the enclosure function is equal to zero. That is:
V'(x) = 0
V(x) = x(1500 - x) = length * breadth.
This means the enclosure has a length of x and a width of 1500 - x
Given that:
v(x)=1500x-x². Hence:
V'(x) = 1500 -2x
V'(x) = 0
1500 -2x = 0
2x = 1500
x = 1500 / 2
x = 750 feet
The maximum area = 1500(750) - 750² = 562500
The maximum area = 562500 feet²
Is this a multiple choice question? If so what are the options?
My guess is 21
Answer:
128, -256, -1024
Step-by-step explanation:
multiply 32 by 4, multiply 128 by -2, multiply -256 by 4
Answer: 42.190
Step-by-step explanation:
From the question, the population variances are not equal. The calculation has been attached in the picture below.
The answer is 42.190 to 3 decimal places.
Hello!
To find the maximum value of the function f(x) = -3(x - 10)(x - 4), the easiest way is to find the vertex using the formula: x = -b/2a.
Firstly, we need to simplify f(x).
f(x) = -3(x - 10)(x - 4)
f(x) = -3(x² - 14x + 40)
f(x) = -3x² + 42x + -120
Since the equation f(x) is now simplified to standard form, we can find the vertex.
a = -3, b = 42, and c = -120
x = -(42)/2(-3) = -42/-6 = 7
Then, we substitute 7 into the the function f(x) = -3(x - 10)(x - 4), or
f(x) = -3x² + 42x + -120, to find the y-value of the vertex.
f(x) = -3(7 - 10)(7 - 4)
f(x) = -3(-3)(4)
f(x) = 27
The vertex of f(x) is (7, 27).
Therefore, the maximum x-value for the function f(x) is 7.