The triple card can be any one of 13 values (ace through king). For each of those, the double card can be any one of the remaining 12 values. So concerning only the face values of the cards, there are (13 x 12) = 156 different full hice. If you include attention to the suits, then there a lot more.
Answer: There will enough to paint the outside of a typical spherical water tower.
Step-by-step explanation:
1. Solve for the radius r from the formula for calculate the volume of a sphere. as following:
![V=\frac{4}{3}r^{3}\pi\\\frac{3V}{4\pi}=r^{3}\\r=\sqrt[3]{\frac{3V}{4\pi}}](https://tex.z-dn.net/?f=V%3D%5Cfrac%7B4%7D%7B3%7Dr%5E%7B3%7D%5Cpi%5C%5C%5Cfrac%7B3V%7D%7B4%5Cpi%7D%3Dr%5E%7B3%7D%5C%5Cr%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B3V%7D%7B4%5Cpi%7D%7D)
2. Substitute values:
![r=\sqrt[3]{\frac{3(66,840.28ft^{3})}{4\pi}}=25.17ft](https://tex.z-dn.net/?f=r%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B3%2866%2C840.28ft%5E%7B3%7D%29%7D%7B4%5Cpi%7D%7D%3D25.17ft)
3. Substitute the value of the radius into the equation fo calculate the surface area of a sphere, then you obtain that the surface area of a typical spherical water tower is:

3. If a city has 25 gallons of paint available and one gallon of paint covers 400 square feet of surface area, you must multiply 25 by 400 square feet to know if there will be enough to paint the outside of a typical spherical water tower.

As you can see, there will enough to paint the outside of a typical spherical water tower.
Answer:
a. 70 miles per hour
b. 840 miles
Step-by-step explanation:
280/4 = 70 miles per hour
70*12 = 840 miles