The answer is D.<span>longitudinal</span>
Chemical to thermal to electrical current: Burning of coal or natural gases. Gravitational potential to kinetic to electrical current.
Answer:
213 nA
2.13 mA
851e^-t μA
Explanation:
We have a pretty straightforward question here.
Ohms Law states that the current in an electric circuit is directly proportional to the voltage and inversely proportional to the resistance in the circuit. It is mathematically written as
V = IR, since we need I, we can write that
I = V/R
a) at V = 1 mV
I = (1 * 10^-3) / 4.7 * 10^3
I = 2.13 * 10^-7 A or 213 nA
b) at V = 10 V
I = 10 / 4.7 * 10^3
I = 0.00213 A or 2.13 mA
c) at V = 4e^-t
I = 4e^-t / 4.7 * 10^3
I = 0.000851e^-t A or 851e^-t μA
I believe the answer is B. that's where the asetroid belt is.
Answer:
346.70015 m/s
Explanation:
In the x axis speed is

In the y axis

The resultant velocity is given by

The magnitude of the overall velocity of the hamper at the instant it strikes the surface of the ocean is 346.70015 m/s