Answer:
0.2 m/s
Explanation:
given,
mass of astronaut, M = 85 Kg
mass of hammer, m = 1 Kg
velocity of hammer , v =17 m/s
speed of astronaut, v' = ?
initial speed of the astronaut and the hammer be equal to zero = ?
Using conservation of momentum
(M + m) V = M v' + m v
(M + m) x 0 = 85 x v' + 1 x 17
85 v' = -17
v' = -0.2 m/s
negative sign represent the astronaut is moving in opposite direction of hammer.
Hence, the speed of the astronaut is equal to 0.2 m/s
Answer:
<em>The amount of electric charge transported = 0.192 C</em>
Explanation:
Electric Charge: This is defined as the product of electric current and time in an electric circuit, The S.I unit of electric charge is Coulombs (C)
Q = It..................... Equation 1
Where Q = Electric charge, I = electric current, t = time.
<em>Given:</em> I = 285 mA, t = 674 milliseconds.
<em>Conversion: (i) Convert from 285 mA to A = (285/1000) A = 0.285 A</em>
<em> (ii) convert from 674 milliseconds to seconds = (674/1000) s = 0.674 s </em>
Substituting these values into equation 1
Q = 0.285 × 0.674
<em>Q = 0.192 C</em>
<em>Therefore the amount of electric charge transported = 0.192 C</em>
<em></em>
<em></em>
The answer is "B" - If there are no windows then there will be no light coming in, and therefore you don't have to worry about what time of day you do the experiment at.
Answer:
-2.83 m/s²
Explanation:
- Initial velocity (u) = 34 m/s
- Final velocity (v) = 17 m/s
- Time taken (t) = 6 seconds
❖ Acceleration is defined as the rate of change in velocity with time.
→ a = (v - u)/t
- v denotes final velocity
- a denotes acceleration
- u denotes initial velocity
- t denotes time
→ a = (17 - 34)/6 m/s²
→ a = -17/6 m/s²
<h3>→ Acceleration = -2.83 m/s²</h3>
(Minus sign implies that the velocity is decreasing.)
Explanation:
When the body temperature tends to rise, such as during physical exercise, the body begins to sweat. The sweat with high water content is secreted in the skin and when it evaporates into the environment, it cools the body. This is due to the property of water having high heat capacity. It carries with it a lot of heat per molecule (because water requires much energy – than most materials - for its temperature to rise by a degree) hence ideal for cooling. This is why on a hot day, sweating makes the skin feel cooler than the surrounding.
Learn More:
brainly.com/question/3373457
brainly.com/question/8612368
brainly.com/question/3974753
brainly.com/question/1899215
#LearnWithBrainly