Answer:
a soft foam material because soft materials absorb sound better
Answer:
The answer to the question is;
The total potential energy of the mass on the spring when the mass is at either endpoint of its motion is 5.0255 Joules.
Explanation:
To answer the question, we note that the maximum speed is 2.30 m/s and the mass is 1.90 kg
Therefore the maximum kinetic energy of motion is given by
Kinetic Energy, KE =
Where,
m = Attached vibrating mass = 1.90 kg
v = velocity of the string = 2.3 m/s
Therefore Kinetic Energy, KE =
×1.9×2.3² = 5.0255 J
From the law of conservation of energy, we have the kinetic energy, during the cause of the vibration is converted to potential energy when the mass is at either endpoint of its motion
Therefore Potential Energy PE at end point = Kinetic Energy, KE at the middle of the motion
That is the total potential energy of the mass on the spring when the mass is at either endpoint of its motion is equal to the maximum kinetic energy.
Total PE = Maximum KE = 5.0255 J.
The hang time of the ball is 4.08 s
Explanation:
The ball is in free fall motion: this means that it is acted upon gravity only, so its acceleration is the acceleration of gravity,

downward (the negative sign refers to the downward direction).
Since this is a uniformly accelerated motion, we can solve the problem by using the following suvat equation:

where
v is the final velocity
u is the initial velocity
a is the acceleration
t is the time
First we calculate the time it takes for the ball to reach the maximum height, where the velocity is zero:
v = 0
Substituting:
u = +20 m/s

we find t

The motion of the ball is symmetrical, so the total time of flight is just twice the time needed to reach the maximum height, therefore:

Learn more about free fall:
brainly.com/question/1748290
brainly.com/question/11042118
brainly.com/question/2455974
brainly.com/question/2607086
#LearnwithBrainly
The exact magnification of the objects is calculated by dividing the cinema. We calculate it by diving the erect image size by the object size. From the given above, we find the exact magnification by dividing 5.0 cm by 1.0 cm. Thus, the answer would be 5.
Answer:
2.08 s
Explanation:
We are given that
Speed,v=50mph=73.3ft/s
1 mile=5280 feet
1 hour=3600 s
Distance,d=461 ft
t=2.5 s
v'=60 mph=88 ft/s
We have to find the perception reaction time.
Perception reaction distance=


