Use w=m*g value of g is 1.67m/s^2
Hello!!
Here we have a simple matter of conservation of energy. ME=PE+KE.
At point A we have PE=mgh and KE=1/2mv^2. At point A all we have is PE since the coaster isn’t rolling yet. But by conservation of energy, we know that it will have enough energy to roll down and get to and equal height on another hill. Providing we are neglecting friction and drag and resistance forces which we are in this case. So we can conclude that the KE will be greater at Point B since ME=PE+KE and for ME to remain the same and we know the PE is less on lower hill, so we can conclude that KE on lower hill is greater to keep ME the same and have conservation of energy.
Hope this helps you understand the concept!! Any questions please just ask!! Thank you so much!!
Answer:
3.57 MJ
Explanation:
ASSUMING it's fresh water with density of 1000 kg/m³
W = ΔPE = mgΔh = 14.0(1000)(9.81)(26.0) = 3,570,840 J
Salt water would require more.
The answer is always true a
Answer:

Work done = = 5 kJ
Explanation:
Given data:
volume of nitrogen 



Polytropic exponent n = 1.4
![\frac{T_2}{T_1} = [\frac{P_2}{P_1}]^{\frac{n-1}{n}](https://tex.z-dn.net/?f=%5Cfrac%7BT_2%7D%7BT_1%7D%20%3D%20%5B%5Cfrac%7BP_2%7D%7BP_1%7D%5D%5E%7B%5Cfrac%7Bn-1%7D%7Bn%7D)
putting all value
![\frac{T_2}{473} = [\frac{80}{150}]^{\frac{1.4-1}{1.4}](https://tex.z-dn.net/?f=%5Cfrac%7BT_2%7D%7B473%7D%20%3D%20%5B%5Cfrac%7B80%7D%7B150%7D%5D%5E%7B%5Cfrac%7B1.4-1%7D%7B1.4%7D)

polytropic process is given as



work done 

= 5 kJ