Momentum is conserved, so the sum of the separate momenta of the car and wagon is equal to the momentum of the combined system:
(1250 kg) ((36.2 <em>i</em> + 12.7 <em>j </em>) m/s) + (448 kg) ((13.8 <em>i</em> + 10.2 <em>j</em> ) m/s) = ((1250 + 448) kg) <em>v</em>
where <em>v</em> is the velocity of the system. Solve for <em>v</em> :
<em>v</em> = ((1250 kg) ((36.2 <em>i</em> + 12.7 <em>j </em>) m/s) + (448 kg) ((13.8 <em>i</em> + 10.2 <em>j</em> ) m/s)) / (1698 kg)
<em>v</em> ≈ (30.3 <em>i</em> + 12.0 <em>j</em> ) m/s
Answer:
A theory is a system of ideas intended to explain something, and a hypothesis is an educated guess.
Explanation: Hope this Helps! :)
Answer:
The maximum load that this person is able to lift is 34.3 N
Explanation:
Applying the balancing torque, the expression is equal:
F₁L₁ = F₂L₂

Where
g = 9.8 m/s² = gravity
L₁ = 0.8 m
F₂ = 527 N
L₂ = 6 - 0.8 = 5.2 m
Replacing and clearing the mass m:

The maximum load that this person is able to lift is:
F = m * g = 3.5 * 9.8 = 34.3 N