Answer:
eukaryotic cells
Explanation:
"Smooth endoplasmic reticulum (sER) is (a part of) endoplasmic reticulum that is tubular in form and lacks ribosomes. It is present in eukaryotic cells and is associated with lipid synthesis, carbohydrate metabolism, regulation of calcium concentration, and drug detoxification"
source: biologyonline
Answer:
The angular speed of the system increases.
The moment of inertia of the system decreases.
Explanation:
As we know that the girl is going towards the center of the circle so here the moment of inertia of the girl is given as

here we know that
r = position of the girl from the center of the disc
now we know that the girl is moving towards the center so its distance will continuously decreasing
So the moment of inertia of the girl will decrease
Now we know that that with respect to the center of the disc there is no torque on the disc + girl system
So here we can use angular momentum conservation
So we have

since moment of inertia is decreasing for the system
so angular speed will increase
Are their any multiple choice questions? Also you said, "<span>Birds that have adapted to temperatures in their environment must find a way to adapt." It says they already adapted lol</span>
The net force on the sled is 6.6 N pointing backwards, opposite to the direction it's sliding. That's why it's slowing down, and will eventually stop.
Answer:
-1.24 m/s
Explanation:
Total momentum before collision = total momentum after collision
Total momentum before collision = (mass of full back * velocity of fullback) + (mass of lineman * velocity of line man).
Mass of full back = 112 kg, mass of line bag = 120 kg, velocity of full back 6 m/s (east), velocity of line back = -8 m/s (west). Hence:
Total momentum before collision = (112 * 6) + (120 * -8) = 672 - 960 = -288 kgm/s
The total momentum after collision = (mass of full back + mass of line back) * velocity after collision.
Let velocity after collision be v, hence:
The total momentum after collision = (112 + 120)v = 232v
Total momentum before collision = total momentum after collision
-288 = 232v
v = -288 / 232
v = -1.24 m/s
Therefore after collision, the two players would move at a velocity 1.24 m/s west (the same direction as the lineman).