An mL is also equivalent to cm³, signifying that 140 mL is equivalent to 140 cm³. The mass of ethanol is calculated by multiplying the density by the volume.
mass = (140 cm³)(0.789 g/cm³)
mass = 110.46 g
Then, calculate the number of moles of ethanol by dividing the mass by the molar mass of ethanol equal to 46.07 g/mol.
number of moles = (110.46 g/ 46.07 g/mol) = 2.4 mol
Then, multiply the number of moles by the Avogadro's number.
2.4 mol (6.022 x 10²³)
<em> number of molecules = 1.445 x 10²⁴</em>
Answer:
D. A solution.
Explanation:
"Water molecules pull the sodium and chloride ions apart, breaking the ionic bond that held them together. After the salt compounds are pulled apart, the sodium and chloride atoms are surrounded by water molecules, as this diagram shows. Once this happens, the salt is dissolved, resulting in a homogeneous solution."
Since Titan orbits roughly along Saturn's equatorial plane, and Titan's tilt relative to the sun is about the same as Saturn's, Titan's seasons are on the same schedule as Saturn's—seasons that last more than seven Earth years, and a year that lasts 29 Earth years.
Water can exist in three states.
1) Solid State: Called Ice.
2) Liquid State: Called Liquid Water.
3) Gas State: Called Steam.
Remember:
The physical states of a matter depends upon the interactions between the particles of that substance. The interactions are very strong in solid state, strong in liquid state and very weak or negligible in gas state.
If you want to change the state from solid to liquid, or from liquid to gas you will have to provide energy in order to break the interactions between the molecules. Stronger the interactions, the more is energy required to break the interactions.
Water need more energy to convert from liquid to gas phase because hydrogen bond interactions are present among the molecules of water. And the hydrogen bonds are strong enough. Hence in order to break these interactions high energy is required.