Answer:
pH = 4.9
Explanation:
Given data
[H⁺] = 13 × 10⁻⁶ M
The pH is a scale used to determine <em>the acidity or basicity of a solution</em>. The pH is related to the concentration of hydrogen ions through the following expression.
pH = -log [H⁺]
pH = -log 13 × 10⁻⁶
pH = 4.9
Since the pH < 7, the soil is considered to be acid.
Lead is heavier and more resistant. Plastic foam is light and can easily be broken
<h3>
Answer:</h3>

<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
- Analyzing Reactions RxN
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[RxN - Balanced] 2C + O₂ → 2CO₂
[Given] 0.25 moles O₂
[Solve] moles CO₂
<u>Step 2: Identify Conversions</u>
[RxN] 1 mol O₂ → 2 mol CO₂
<u>Step 3: Stoichiometry</u>
- [DA] Set up:

- [DA] Multiply/Divide [Cancel out units]:

Answer:
118.22 atm
Explanation:
2SO₂(g) + O₂(g) ⇌ 2SO₃(g)
KP = 0.13 = 
Where p(SO₃) is the partial pressure of SO₃, p(SO₂) is the partial pressure of SO₂ and p(O₂) is the partial pressure of O₂.
- With 2.00 mol SO₂ and 2.00 mol O₂ if there was a 100% yield of SO₃, then 2 moles of SO₃ would be produced and 1.00 mol of O₂ would remain.
- With a 71.0% yield, there are only 2*0.71 = 1.42 mol SO₃, the moles of SO₂ that didn't react would be 2 - 1.42 = 0.58; and the moles of O₂ that didn't react would be 2 - 1.42/2 = 1.29.
The total number of moles is 1.42 + 0.58 + 1.29 = 3.29. With that value we can calculate the molar fraction (X) of each component:
The partial pressure of each gas is equal to the total pressure (PT) multiplied by the molar fraction of each component.
Rewriting KP and solving for PT:
