To solve this problem we need to apply the corresponding sound intensity measured from the logarithmic scale. Since in the range of intensities that the human ear can detect without pain there are large differences in the number of figures used on a linear scale, it is usual to use a logarithmic scale. The unit most used in the logarithmic scale is the decibel yes described as

Where,
I = Acoustic intensity in linear scale
= Hearing threshold
The value in decibels is 17dB, then

Using properties of logarithms we have,




Therefore the factor that the intensity of the sound was 
<span>NaCH is not an element, it is a compound. An element can be found and identified on the periodic table to elements. A compound is a combination of two of more elements. NaCH is composed of three elements: Na (sodium), C (carbon) and H (hydrogen), making it a compound.</span>
Answer:
A free body diagram with 2 forces: the first pointing downward labeled F Subscript g Baseline 20 N and the second pointing upward labeled F Subscript air Baseline 20 N.
Explanation:
This is because at terminal velocity, the ball stops accelerating and the net force on the ball is zero. For the net force to be zero, equal and opposite forces must act on the ball, so that their resultant force is zero. That is F₁ + F₂ = 0 ⇒ F₁ = -F₂
Since F₁ = 20 N, then F₂ = -F₁ = -20 N
So, if F₁ points upwards since it is positive, then F₂ points downwards since it is negative.
So, a free body diagram with 2 forces: the first pointing downward labeled F Subscript g Baseline 20 N and the second pointing upward labeled F Subscript air Baseline 20 N best describes the ball falling at terminal velocity.
The heat energy released from a piece of wire or any other section of a circuit is:
Energy = (voltage between its ends) x (current through it) x (time it's been going)