1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
V125BC [204]
2 years ago
10

The planets in our solar system all have ______________orbits.

Physics
1 answer:
nadezda [96]2 years ago
8 0

Answer:

elliptical

Explanation:

The orbits of the planets are ellipses with the Sun at one focus, though all except Mercury are very nearly circular.

You might be interested in
A rock is projected upward from the surface of the moon, at time t = 0.0 s, w a velocity of 30 m/s. The acceleration due to grav
Vinvika [58]
<h2>Answer: 277.777 m</h2>

Explanation:

The situation described here is parabolic movement. However, as we are told that the rock was<u> projected upward from the surface</u>, we will only use the equations related to the Y axis.

In this sense, the movement equations in the Y axis are:

y-y_{o}=V_{o}.t+\frac{1}{2}g.t^{2}    (1)

V=V_{o}-g.t    (2)

Where:

y  is the rock's final position

y_{o}=0  is the rock's initial position

V_{o}=30\frac{m}{s} is the rock's initial velocity

V is the final velocity

t is the time the parabolic movement lasts

g=1.62\frac{m}{s^{2}}  is the acceleration due to gravity at the surface of the moon

As we know y_{o}=0 , equation (2) is rewritten as:

y=V_{o}.t+\frac{1}{2}g.t^{2}    (3)

On the other hand, the maximum height  is accomplished when V=0:

V=V_{o}-g.t=0    (4)

V_{o}-g.t=0    

V_{o}=g.t    (5)

Finding t:

t=\frac{V_{o}}{g}    (6)

Substituting (6) in (3):

y=V_{o}(\frac{V_{o}}{g})+\frac{1}{2}g(\frac{V_{o}}{g})^{2}    (7)

y_{max}=\frac{{V_{o}}^{2}}{2g}    (8)  Now we can calculate the maximum height of the rock

y_{max}=\frac{{(30m/s)}^{2}}{(2)(1.62m/s^{2})}   (9)

Finally:

y_{max}=277.777m  

4 0
3 years ago
You have a 100 ohm resistor. How
sp2606 [1]

Answer:

R2 = 300 Ohms

Explanation:

Let the two resistors be R1 and R2 respectively.

RT is the total equivalent resistance.

Given the following data;

R1 = 100 Ohms

RT = 75 Ohms

To find R2;

Mathematically, the total equivalent resistance of resistors connected in parallel is given by the formula;

RT = \frac {R1*R2}{R1 + R2}

Substituting into the formula, we have;

75 = \frac {100*R2}{100 + R2}

Cross-multiplying, we have;

75 * (100 + R2) = 100R2

7500 + 75R2 = 100R2

7500 = 100R2 - 75R2

7500 = 25R2

R2 = 7500/25

R2 = 300 Ohms

4 0
2 years ago
Pls help i have test
Luden [163]

Answer:

A. something pushes or pulls it to stop.

Explanation:

Newtons first law. hope this helps

8 0
3 years ago
Read 2 more answers
MARKING BRAINLIST | Which situation below would have the STRONGEST gravitational force between them?
maks197457 [2]

Case d) has the strongest gravitational force

Explanation:

The magnitude of the gravitational force between two objects is given by the equation:

F=G\frac{m_1 m_2}{r^2}

where :

G=6.67\cdot 10^{-11} m^3 kg^{-1}s^{-2} is the gravitational constant

m1, m2 are the masses of the two objects

r is the separation between the objects

a) For this pair of objects:

m1 = 10 kg

m2 = 2 kg

r = 30 km = 30,000 m

So the gravitational force is

F=(6.67\cdot 10^{-11})\frac{(10)(2)}{30000^2}=1.48\cdot 10^{-18}N

b) For this pair of objects:

m1 = 10 kg

m2 = 10 kg

r = 30 km = 30,000 m

So the gravitational force is

F=(6.67\cdot 10^{-11})\frac{(10)(10)}{30000^2}=7.41\cdot 10^{-18}N

c) For this pair of objects:

m1 = 2 kg

m2 = 2 kg

r = 10 km = 10,000 m

So the gravitational force is

F=(6.67\cdot 10^{-11})\frac{(2)(2)}{10000^2}=1.33\cdot 10^{-17}N

d) For this pair of objects:

m1 = 10 kg

m2 = 10 kg

r = 10 km = 10,000 m

So the gravitational force is

F=(6.67\cdot 10^{-11})\frac{(10)(10)}{10000^2}=6.67\cdot 10^{-17}N

Therefore, the  strongest gravitational force is in case d).

Learn more about gravitational force:

brainly.com/question/1724648

brainly.com/question/12785992

#LearnwithBrainly

6 0
3 years ago
when a person uses an iron to remove the wrinkles from a shirt, why does heat travel from the iron to the shirt?
artcher [175]
I think the answer to your question is that:
There is chemical energy being produced (by the water) and that causes the base of iron to absorb the heat. Then when the heated base of the iron is placed onto the shirt, the heat flattens the wrinkles on it.
3 0
3 years ago
Other questions:
  • Convert 288cm to Meters<br><br> Give explanation + formula
    6·1 answer
  • The gravity of Neptune is about 1.1 times the gravity of earth. How will the mass of an object on Neptune compare with its mass
    9·2 answers
  • An airplane flies in a horizontal circle of radius 500 m at a speed of 150 m/s. If the plane were to fly in the same 500 m circl
    5·1 answer
  • What is the energy equivalent of an object with a mass of 25 kg?
    10·1 answer
  • Stars that become black holes have more __________ than stars that become neutron stars
    14·2 answers
  • A watt is a unit of energy per unit time, and one watt (W) is equal to one joule per second ( J ⋅ s − 1 ) J⋅s−1) . A 40.0 W 40.0
    6·1 answer
  • What scientist shot alpha particles into gold
    8·2 answers
  • 35. A daredevil is launched out of a
    15·1 answer
  • What kind of mixture is the gravel at the bottom of the fish tank?
    13·2 answers
  • Estimate the force a person must exert on a massless string attached to a 0.15 kg ball to make the ball revolve in horizontal ci
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!