Answer:
In the air
Explanation:
There are three states of matter:
- Solids: in solids, the particles are tightly bond together by strong intermolecular forces, so they cannot move freely - they can only vibrate around their fixed position
- Liquids: in liquids, particles are more free to move, however there are still some intermolecular forces keeping them close to each other
- Gases: in gases, particles are completely free to move, as the intermolecular forces between them are negligible
For this reason, it is generally easier to compress/expand the volume of a gas with respect to the volume of a liquid.
In this problem, we are comparing water (which is a liquid) with air (which is a gas). From what we said above, this means that the change in volume is larger in the air rather than in the water.
Answer:
r1 = 5*10^10 m , r2 = 6*10^12 m
v1 = 9*10^4 m/s
From conservation of energy
K1 +U1 = K2 +U2
0.5mv1^2 - GMm/r1 = 0.5mv2^2 - GMm/r2
0.5v1^2 - GM/r1 = 0.5v2^2 - GM/r2
M is mass of sun = 1.98*10^30 kg
G = 6.67*10^-11 N.m^2/kg^2
0.5*(9*10^4)^2 - (6.67*10^-11*1.98*10^30/(5*10^10)) = 0.5v2^2 - (6.67*10^-11*1.98*10^30/(6*10^12))
v2 = 5.35*10^4 m/s
Answer:
a = 2 [m/s²]
Explanation:
To be able to solve this problem we must make it clear that the starting point when the time is equal to zero, the velocity is 5 [m/s] and when three seconds have passed the velocity is 11 [m/s], this point is the final point or the final velocity.
We can use the following equation.

where:
Vf = final velocity = 11 [m/s]
Vo = initial velocity = 5 [m/s]
a = acceleration [m/s²]
t = time = 3 [s]
![11 = 5 + a*3\\6=3*a\\a= 2[m/s^{2} ]](https://tex.z-dn.net/?f=11%20%3D%205%20%2B%20a%2A3%5C%5C6%3D3%2Aa%5C%5Ca%3D%202%5Bm%2Fs%5E%7B2%7D%20%5D)
Based on the situation above the the work done was 400 Joules. <span>Q = FS cos(theta) is the so-called work function. It's important to learn the work physics; you'll see it over and over in science/physics class. Theta is the angle between the force vector F and the distance vector S. In your problem we assume theta = 0, the two vectors were assumed aligned.</span>
<h3>
Answer:</h3>
49 N
<h3>
Explanation:</h3>
<u>We are given;</u>
- Mass of the brick as 3 kg
- The coefficient of friction as 0.6
We are required to determine the force that must be applied by the woman so the brick does not fall.
- We need to importantly note that;
- For the brick not to fall the, the force due to gravity is equal to the friction force acting on the brick.
- That is; Friction force = Mg
But; Friction force = μ F
Therefore;
μ F = mg
0.6 F = 3 × 9.8
0.6 F = 29.4
F = 49 N
Therefore, she must use a force of 49 N