Answer:
t = 2.2 s
Explanation:
Given that,
Height of the roof, h = 24.15 m
The initial velocity of the pumpkin, u = 0
We need to find the time taken for the pumpkin to hit the ground. Let the time be t. Using second equation of kinematics to find it as follows :

Here, u = 0 and a = g

So, it will take 2.22 s for the pumpkin to hit the ground.
Answer: lift force = 100sin60 = 86.6 N
pull force = 100sin60 = 50.0 N
Explanation:
We can solve the problem by using the first law of thermodynamics:

where
is the variation of internal energy of the system
Q is the heat added to the system
W is the work done by the system
In this problem, the variation of internal energy of the system is

While the heat added to the system is

therefore, the work done by the system is

Answer: Impulse = 4 kgm/s
Explanation:
From the question, you're given the following parameters:
Momentum P1 = 12 kgm/s
Momentum P2 = 16 kgm/s
Time t = 0.2 s
According to second law of motion,
Force F = change in momentum ÷ time
That is
F = (P2 - P1)/t
Cross multiply
Ft = P2 - P1
Where Ft = impulse
Substitute P1 and P2 into the formula
Impulse = 16 - 12 = 4 kgm/s
The magnitude of the impulse is therefore 4 kgm/s.