1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elanso [62]
2 years ago
5

If the car has a mass of 1200 kg, how much force must the engine provide?

Physics
1 answer:
vazorg [7]2 years ago
6 0

Force in Newtons =

(1200)•(the rate of acceleration you want)

It depends on how fast you want to accelerate.

You might be interested in
During a trial run, race car A starts from rest and accelerates uniformly along a straight level track for a particular interval
kondor19780726 [428]
Answer: car B has travelled 4times as far as Car A

d=vi*t+1/2at^2

No initial velocity so equation becomes;

d=1/2at^2 and the acceleration is the same between both only time is different;

Car A d=1/2a(1)^2

Car B d=1/2a(2)^2

Car A d= 1^2=1

Car B d= 2^2=4

Car B d=4*Car A

So car B has travelled 4 times as far as car A
5 0
3 years ago
A 54 kg person stands on a uniform 20 kg, 4.1 m long ladder resting against a frictionless wall.
SVETLANKA909090 [29]

A) Force of the wall on the ladder: 186.3 N

B) Normal force of the ground on the ladder: 725.2 N

C) Minimum value of the coefficient of friction: 0.257

D) Minimum absolute value of the coefficient of friction: 0.332

Explanation:

a)

The free-body diagram of the problem is in attachment (please rotate the picture 90 degrees clockwise). We have the following forces:

W=mg: weight of the ladder, with m = 20 kg (mass) and g=9.8 m/s^2 (acceleration of gravity)

W_M=Mg: weight of the person, with M = 54 kg (mass)

N_1: normal reaction exerted by the wall on the ladder

N_2: normal reaction exerted by the floor on the ladder

F_f = \mu N_2: force of friction between the floor and the ladder, with \mu (coefficient of friction)

Also we have:

L = 4.1 m (length of the ladder)

d = 3.0 m (distance of the man from point A)

Taking the equilibrium of moments about point A:

W\frac{L}{2}sin 21^{\circ}+W_M dsin 21^{\circ} = N_1 Lsin 69^{\circ}

where

Wsin 21^{\circ} is the component of the weight of the ladder perpendicular to the ladder

W_M sin 21^{\circ} is the component of the weight of the man perpendicular to the ladder

N_1 sin 69^{\circ} is the component of the normal  force perpendicular to the ladder

And solving for N_1, we find the force exerted by the wall on the ladder:

N_1 = \frac{W}{2}\frac{sin 21^{\circ}}{sin 69^{\circ}}+W_M \frac{d}{L}\frac{sin 21^{\circ}}{sin 69^{\circ}}=\frac{mg}{2}\frac{sin 21^{\circ}}{sin 69^{\circ}}+Mg\frac{d}{L}\frac{sin 21^{\circ}}{sin 69^{\circ}}=\frac{(20)(9.8)}{2}\frac{sin 21^{\circ}}{sin 69^{\circ}}+(54)(9.8)\frac{3.0}{4.1}\frac{sin 21^{\circ}}{sin 69^{\circ}}=186.3 N

B)

Here we want to find the magnitude of the normal force of the ground on the ladder, therefore the magnitude of N_2.

We can do it by writing the equation of equilibrium of the forces along the vertical direction: in fact, since the ladder is in equilibrium the sum of all the forces acting in the vertical direction must be zero.

Therefore, we have:

\sum F_y = 0\\N_2 - W - W_M =0

And substituting and solving for N2, we find:

N_2 = W+W_M = mg+Mg=(20)(9.8)+(54)(9.8)=725.2 N

C)

Here we have to find the minimum value of the coefficient of friction so that the ladder does not slip.

The ladder does not slip if there is equilibrium in the horizontal direction also: that means, if the sum of the forces acting in the horizontal direction is zero.

Therefore, we can write:

\sum F_x = 0\\F_f - N_1 = 0

And re-writing the equation,

\mu N_2 -N_1 = 0\\\mu = \frac{N_1}{N_2}=\frac{186.3}{725.2}=0.257

So, the minimum value of the coefficient of friction is 0.257.

D)

Here we want to find the minimum coefficient of friction so the ladder does not slip for any location of the person on the ladder.

From part C), we saw that the coefficient of friction can be written as

\mu = \frac{N_1}{N_2}

This ratio is maximum when N1 is maximum. From part A), we see that the expression for N1 was

N_1 = \frac{W}{2}\frac{sin 21^{\circ}}{sin 69^{\circ}}+W_M \frac{d}{L}\frac{sin 21^{\circ}}{sin 69^{\circ}}

We see that this quantity is maximum when d is maximum, so when

d = L

Which corresponds to the case in which the man stands at point B, causing the maximum torque about point A. In this case, the value of N1 is:

N_1 = \frac{W}{2}\frac{sin 21^{\circ}}{sin 69^{\circ}}+W_M \frac{L}{L}\frac{sin 21^{\circ}}{sin 69^{\circ}}=\frac{sin 21^{\circ}}{sin 69^{\circ}}(\frac{W}{2}+W_M)

And substituting, we get

N_1=\frac{sin 21^{\circ}}{sin 69^{\circ}}(\frac{(20)(9.8)}{2}+(54)(9.8))=240.8 N

And therefore, the minimum coefficient of friction in order for the ladder not to slip is

\mu=\frac{N_1}{N_2}=\frac{240.8}{725.2}=0.332

Learn more about torques and equilibrium:

brainly.com/question/5352966

#LearnwithBrainly

7 0
3 years ago
An auditorium measures 43.0m × 18.0m × 15.0m. The density of air is 1.20 kg/m3. What is the volume of the room in cubic feet? (D
frez [133]
The question here would be what is the volume of the room. The density of air that is given has no use. We simply multiply the dimensions given of the room to determine  the volume.

<span>43.0m × 18.0m × 15.0m = 11610m^3 ( 3.28 ft / 1 m)^3 = 4.09 x 10^5 ft^3</span>
5 0
2 years ago
Some one help my science homework is due tomorrow and I'm so stuck with question 8-9, and 11-12
yuradex [85]
Off the top of my head, I only know 9 and 11, so I'll answer those two.

9) A heterotroph is an organism that relies on other organisms for food/energy
    An autotroph can produce its own food from inorganic compounds (light)

11) Vascular plants have specialized tubes for transporting nutrients
      Nonvascular plants do not have such tubes and are simpler
5 0
3 years ago
Convert the following statement to the language used by physicists, "I am cold, please turn on the heat."​
Vikki [24]

Answer:

Explanation:fog

6 0
3 years ago
Other questions:
  • You are planning to make an open rectangular box from an 8-in.-by-15-in. piece of cardboard by cutting congruent squares from th
    15·1 answer
  • If the work function for a certain metal is 1.8eV, what is the stopping potential for electrons ejected from the metal when ligh
    12·1 answer
  • If the brakes are applied and the speed of the car is reduced to 13 m/s in 17 s , determine the constant deceleration of the car
    9·1 answer
  • Gymnasts often practice on foam floors, which increase the collision time when a gymnast falls. What effect does this have on co
    5·1 answer
  • A meter stick balances at the 50.0-cm mark. If a mass of 50.0 g is placed at the 90.0-cm mark, the stick balances at the 61.3-cm
    13·2 answers
  • A 480 kg car moving at 14.4 m/s hits from behind another car moving at 13.3 m/s in the same direction. If the second car has a m
    15·1 answer
  • 162 x [ 6 ( 7 x 4²) ]<br><br> I got 108,864, Is this correct?
    12·1 answer
  • A woman is sitting at a bus stop when an ambulance with a siren wailing at 317 Hz approaches at 69 miles per hour (mph). Assume
    5·1 answer
  • What is the efficiency of a 0.60 kg basketball that, one dropped from a 2.0 m height (from basket rim) , rebounds to 1.2 m in he
    5·1 answer
  • A cylinder-piston system contains an ideal gas at a pressure of 1.5 105 pa.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!