E, there is no state of matter that has no particle motion, however a solid's particles are only vibrating.
Answer:
The answer is 631.157
Explanation:
The question requested that the answer to the subtraction of 26.543 from 657.70 must be written using significant figures.
Here are a few tips about how to Identify significant figures.
1) It should be noted that <u>the number "0" is what is usually (but not always) affected</u> while trying to identify significant figures. Hence, <u>all other numbers/digits are always significant</u>. For example, 26.543 has five significant figures.
2) The zeros found between these "other numbers/digits" are also significant. For example, 2202 has four significant figures.
3) In the case of a decimal, the tailing zeros or the final zero is also significant. 657.70 and 657.07 have five significant figures.
Now, back to the question
657.70 - 26.543 = 631.157.
Our final answer does not have a zero, hence all the digits (six) are significant.
Answer:
-3+3 i think this is the answer
Explanation:
i think you can ask someone else sorry
Answer:
109.32 N/m
Explanation:
Given that
Mass of the hung object, m = 8 kg
Period of oscillation of object, T = 1.7 s
Force constant, k = ?
Recall that the period of oscillation of a Simple Harmonic Motion is given as
T = 2π √(m/k), where
T = period of oscillation
m = mass of object and
k = force constant if the spring
Since we are looking for the force constant, if we make "k" the subject of the formula, we have
k = 4π²m / T², now we go ahead to substitute our given values from the question
k = (4 * π² * 8) / 1.7²
k = 315.91 / 2.89
k = 109.32 N/m
Therefore, the force constant of the spring is 109.32 N/m
Answer:

Explanation:
The principle of conservation of momentum, states that if the sum of the forces acting on a system is null, the initial total momentum of the system before a collision equals the final total momentum of the system after the collision. The collision is completely inelastic, which means that the players remain stick to each other after the collision:
