Perpendicular acceleration:
F = ma
a = 4 / 2 = 2 m/s²
Perpendicular distance:
s = ut + 1/2 at²
s = 0 x 4 + 1/2 x 2 x 4²
s = 16 m
Horizontal distance:
s = ut
= 3 x 4
= 12 m
Total distance = √(12² + 16²)
= 20 m.
... then your weight is <em>25.2 lbf</em> on the moon.
Who was the proponent of the Neo-classicism?
a) Claude Debussy
b) Joseph Maurice Ravel
c) Igor Stravinsky
d) Arnold Schoenberg
Answer:
35.14°C
Explanation:
The equation for linear thermal expansion is
, which means that a bar of length
with a thermal expansion coefficient
under a temperature variation
will experiment a length variation
.
We have then
= 0.481 foot,
= 1671 feet and
= 0.000013 per centigrade degree (this is just the linear thermal expansion of steel that you must find in a table), which means from the equation for linear thermal expansion that we have a
= 22.14°. As said before, these degrees are centigrades (Celsius or Kelvin, it does not matter since it is only a variation), and the foot units cancel on the equation, showing no further conversion was needed.
Since our temperature on a cool spring day was 13.0°C, our new temperature must be
= 35.14°C
Answer:
The rate of heat conduction through the layer of still air is 517.4 W
Explanation:
Given:
Thickness of the still air layer (L) = 1 mm
Area of the still air = 1 m
Temperature of the still air ( T) = 20°C
Thermal conductivity of still air (K) at 20°C = 25.87mW/mK
Rate of heat conduction (Q) = ?
To determine the rate of heat conduction through the still air, we apply the formula below.


Q = 517.4 W
Therefore, the rate of heat conduction through the layer of still air is 517.4 W