1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vitek1552 [10]
3 years ago
14

A photon with a frequency of 5.48 × 1014 hertz is emitted when an electron in a mercury atom falls to a lower energy level. Iden

tify the color of light associated with this photon.
Physics
1 answer:
ludmilkaskok [199]3 years ago
3 0
The color should be green.
You might be interested in
The International Space Station (ISS) orbits Earth at an altitude of 4.08 × 105 m above the surface of the planet. At what veloc
alukav5142 [94]

This question involves the concepts of orbital velocity and orbital radius.

The orbital velocity of ISS must be "7660.25 m/s".

The orbital velocity of the ISS can be given by the following formula:

v=\sqrt{\frac{GM}{R}}

where,

v = orbital velocity = ?

G = Universal Gravitational Constant = 6.67 x 10⁻¹¹ N.m²/kg²

M = Mass of Earth = 5.97 x 10²⁴ kg

R = orbital radius = radius of earth + altitude = 63.78 x 10⁵ m + 4.08 x 10⁵ m

R = 67.86 x 10⁵ m

Therefore,

v=\sqrt{\frac{(6.67\ x\ 10^{-11}\ N.m^2/kg^2)(5.97\ x\ 10^{24}\ kg)}{67.86\ x\ 10^5\ m}}

<u>v = 7660.25 m/s</u>

Learn more about orbital velocity here:

brainly.com/question/541239

3 0
2 years ago
If pressure is increased from 200 kPa to 300 kPa, and the original volume of gas was 1.5 L, what is the new volume? Assume the t
Oxana [17]

Answer:

The answer to your question is:      V2 = 1 l

Explanation:

Data

P1 = 200 kPa

P2 = 300 kPa

V1 = 1.5 l

V2 = ?

Formula

                          P1V1 = P2V2

                          V2 = (P1V1) / P2

                          V2 = (200 x 1.5) / 300

                          V2 = 1 l

6 0
3 years ago
Which statement best describes the law of conservation of energy?
Phantasy [73]
<span>The correct option is C. Energy cannot be created or destroyed. This statement is known as law of conservation of energy, and it implies that whenever a certain form of energy does change, the loss of this form of energy must have converted into an another type of energy. A typical example is an object falling to the ground: initially, the object has gravitational potential energy. As the object falls down, it loses potential energy (since its altitude from the grounf decreases), but it acquires kinetic energy (because its velocity increases). In this example, potential energy has converted into kinetic energy, but the total energy of the object has remained constant.</span>
8 0
3 years ago
Read 2 more answers
A machine part has the shape of a solid uniform sphere of mass 205 g and diameter 4.10 cm. It is spinning about a frictionless a
kondor19780726 [428]

Answer:

Answer is in the following attachment.

                                                                                                                                                                                                 

Explanation:

3 0
3 years ago
The position of a particle moving along the x-axis depends on the time according to the equation x = ct2 - bt3, where x is in me
Sav [38]

Answer:

(a):  \rm meter/ second^2.

(b):  \rm meter/ second^3.

(c):  \rm 2ct-3bt^2.

(d):  \rm 2c-6bt.

(e):  \rm t=\dfrac{2c}{3b}.

Explanation:

Given, the position of the particle along the x axis is

\rm x=ct^2-bt^3.

The units of terms \rm ct^2 and \rm bt^3 should also be same as that of x, i.e., meters.

The unit of t is seconds.

(a):

Unit of \rm ct^2=meter

Therefore, unit of \rm c= meter/ second^2.

(b):

Unit of \rm bt^3=meter

Therefore, unit of \rm b= meter/ second^3.

(c):

The velocity v and the position x of a particle are related as

\rm v=\dfrac{dx}{dt}\\=\dfrac{d}{dx}(ct^2-bt^3)\\=2ct-3bt^2.

(d):

The acceleration a and the velocity v of the particle is related as

\rm a = \dfrac{dv}{dt}\\=\dfrac{d}{dt}(2ct-3bt^2)\\=2c-6bt.

(e):

The particle attains maximum x at, let's say, \rm t_o, when the following two conditions are fulfilled:

  1. \rm \left (\dfrac{dx}{dt}\right )_{t=t_o}=0.
  2. \rm \left ( \dfrac{d^2x}{dt^2}\right )_{t=t_o}

Applying both these conditions,

\rm \left ( \dfrac{dx}{dt}\right )_{t=t_o}=0\\2ct_o-3bt_o^2=0\\t_o(2c-3bt_o)=0\\t_o=0\ \ \ \ \ or\ \ \ \ \ 2c=3bt_o\Rightarrow t_o = \dfrac{2c}{3b}.

For \rm t_o = 0,

\rm \left ( \dfrac{d^2x}{dt^2}\right )_{t=t_o}=2c-6bt_o = 2c-6\cdot 0=2c

Since, c is a positive constant therefore, for \rm t_o = 0,

\rm \left ( \dfrac{d^2x}{dt^2}\right )_{t=t_o}>0

Thus, particle does not reach its maximum value at \rm t = 0\ s.

For \rm t_o = \dfrac{2c}{3b},

\rm \left ( \dfrac{d^2x}{dt^2}\right )_{t=t_o}=2c-6bt_o = 2c-6b\cdot \dfrac{2c}{3b}=2c-4c=-2c.

Here,

\rm \left ( \dfrac{d^2x}{dt^2}\right )_{t=t_o}

Thus, the particle reach its maximum x value at time \rm t_o = \dfrac{2c}{3b}.

7 0
3 years ago
Other questions:
  • Which layer of the atmosphere is made up of charged atoms?
    6·1 answer
  • The two days of the year on which neither hemisphere is tilted toward or away from the sun are called
    13·2 answers
  • Explain why this statement is incorrect: “If I find something on the Internet, that means it is for public use, and I can do any
    7·2 answers
  • Sociologist use tools such as investigation and data collection to make their study more
    11·1 answer
  • Question 1
    8·1 answer
  • When doing a squat, how do you do it without getting hurt?
    5·2 answers
  • Abid is the hare who runs fast and takes long rest while Gautam runs slow but takes short rest. Abid can run at 5 ms−1 while Gau
    6·1 answer
  • PLEASE HELP NEED ANSWER NOW!!!
    15·1 answer
  • Pls answer quick I need to get the answer rn
    14·1 answer
  • 2. An object's weight is proportional to its _ or _ from another object
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!