1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
madam [21]
3 years ago
8

If you want to conduct an electrical current, which situation would produce a solution capable of this? A) Dissolving water in o

il. B) Dissolving sugar in water. C) Dissolving solid NaBr in oil. D) Dissolving solid NaF in water.
Physics
2 answers:
Phoenix [80]3 years ago
8 0

D) Dissolving solid NaF in water.

svp [43]3 years ago
6 0
D dissolving solid NaF in water

You might be interested in
A cube is 4.4 cm on a side, with one corner at the origin. Part 1 (a) What is the unit vector pointing from the origin to the di
Sidana [21]

Answer:

(a) \hat{A} = \frac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{3}}

(b) \theta = 85.44^{\circ}

Solution:

As per the question:

Side of the cube, a = 4.4 cm

Coordinates of the diagonally opposite corner, A = <4.4, 4.4, 4.4> cm

Now,

(a) To calculate the unit vector:

\hat{A} = \frac{\vec{A}}{|A|}

\hat{A} = \frac{4.4\hat{i} + 4.4\hat{j} + 4.4\hat{k}}{\sqrt{()4.4}^{2} + (4.4)^{2} + (4.4)^{2}}

\hat{A} = \frac{4.4(\hat{i} + \hat{j} + \hat{k})}{4.4\sqrt{3}}

\hat{A} = \frac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{3}}

(b) To calculate the angle between the two vectors say A and A' is given by:

\vec{A}\cdot \vec{A'} = \vec{A}\vec{A'}cos\theta                      

\theta = cos^{- 1}(\frac{\vec{A}\cdot \vec{A'}}{\vec{A}\vec{A'}})        (1)

Now,

The coordinates of the diagonally opposite corner, A' is <0, 0, 1> cm

Thus

\vec{A'} = 0\hat{i} + 0\hat{j} + 1\hat{k} = \hat{k}

Now,

Using equation (1) :

\theta = cos^{- 1}(\frac{(\frac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{3}})\cdot \hat{k}}{|A||A'|})

|A||A'| = (\sqrt{4.4^{2} +4.4^{2} + 4.4^{2}})(\sqrt{0^{2} + 0^{2} + 0^{2}}) = 7.261

Thus

\theta = cos^{- 1}(\frac{\frac{1}{\sqrt{3}}}{7.261})

\theta = cos^{- 1}(0.07946) = 85.44^{\circ}

4 0
3 years ago
Most people will experience hyposmia at some point in their life.<br> OA True<br> OB. False
suter [353]

Answer:

False

Explanation:

it is very rare to get hyposmia

5 0
2 years ago
Read 2 more answers
During a move, Jonas and Matías carry a 115kg safe to the third floor of a building, covering a height of 6.6m.
neonofarm [45]

Answer:

work is =7590joules

power = 23watts

4 0
3 years ago
Read 2 more answers
A motorcycle is following a car that is traveling at constant speed on a straight highway. Initially, the car and the motorcycle
xz_007 [3.2K]

Answer:

a) \Delta{t} = 5.39s

b) the motorcycle travels 155 m

Explanation:

Let t_2-t_1 = \Delta{t}, then consider the equation of motion for the motorcycle (accelerated) and for the car (non accelerated):

v_{m2}=v_0+a\Delta{t}\\x+d=(\frac{v_0+v_{m2}}{2} )\Delta{t}\\v_c = v_0 = \frac{x}{\Delta{t}}

where:

v_{m2} is the speed of the motorcycle at time 2

v_{c} is the velocity of the car (constant)

v_{0} is the velocity of the car and the motorcycle at time 1

d is the distance between the car and the motorcycle at time 1

x is the distance traveled by the car between time 1 and time 2

Solving the system of equations:

\left[\begin{array}{cc}car&motorcycle\\x=v_0\Delta{t}&x+d=(\frac{v_0+v_{m2}}{2}}) \Delta{t}\end{array}\right]

v_0\Delta{t}=\frac{v_0+v_{m2}}{2}\Delta{t}-d \\\frac{v_0+v_{m2}}{2}\Delta{t}-v_0\Delta{t}=d\\(v_0+v_{m2})\Delta{t}-2v_0\Delta{t}=2d\\(v_0+v_0+a\Delta{t})\Delta{t}-2v_0\Delta{t}=2d\\(2v_0+a\Delta{t})\Delta{t}-2v_0\Delta{t}=2d\\a\Delta{t}^2=2d\\\Delta{t}=\sqrt{\frac{2d}{a}}=\sqrt{\frac{2*58}{4}}=\sqrt{29}=5.385s

For the second part, we need to calculate x+d, so you can use the equation of the car to calculate x:

x = v_0\Delta{t}= 18\sqrt{29}=96.933m\\then:\\x+d = 154.933

3 0
3 years ago
A student constructed a series circuit consisting of a 12.0-volt battery, a 10.0-ohm lamp, and a
Stels [109]
The power dissipated across a component can be calculated through the formula P=I^2xR

Substituting the values in we get P=(0.5)^2x10=2.5W
4 0
3 years ago
Other questions:
  • Una lancha sube y baja por el paso de las olas cada 3.2 segundos, entre cresta y cresta hay una distancia de 24.5 m. ¿cual es la
    10·1 answer
  • If it takes a ball dropped from rest 2.069 s to fall to the ground, from what height h was it released?
    5·1 answer
  • Where are some of Earth's youngest rocks found?
    8·1 answer
  • When you snap your wrist open, the frisbee ____
    13·1 answer
  • 1) Air modeled as an ideal gas enters a well-insulated diffuser operating at steady state at 270 K with a velocity of 180 m/s an
    12·1 answer
  • 4. A spring with a mass of 400.0 g is set into simple harmonic motion. The graph of the force of the spring vs. displacement is
    11·2 answers
  • The free-fall acceleration at the surface of planet 1 is 22 m/s^2. The radius and the mass of planet 2 are twice those of planet
    5·1 answer
  • If a model ship is scaled to the ratio of 1:1,200, what size is the real ship
    14·1 answer
  • What are used to measure temperature.
    7·2 answers
  • You are the science officer on a visit to a distant solar system. Prior to landing on a planet you measure its diameter to be 1.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!