1) 4, because 4/5 is closer to 4 than it is 3 1/2.
2) 100
3) 5
Hello!
Simplifying
5x2 + -7x + -3 = 8
Reorder the terms:
-3 + -7x + 5x2 = 8
Solving
-3 + -7x + 5x2 = 8
Solving for variable 'x'.
Reorder the terms:
-3 + -8 + -7x + 5x2 = 8 + -8
Combine like terms: -3 + -8 = -11
-11 + -7x + 5x2 = 8 + -8
Combine like terms: 8 + -8 = 0
-11 + -7x + 5x2 = 0
Begin completing the square. Divide all terms by
5 the coefficient of the squared term:
Divide each side by '5'.
-2.2 + -1.4x + x2 = 0
Move the constant term to the right:
Add '2.2' to each side of the equation.
-2.2 + -1.4x + 2.2 + x2 = 0 + 2.2
Reorder the terms:
-2.2 + 2.2 + -1.4x + x2 = 0 + 2.2
Combine like terms: -2.2 + 2.2 = 0.0
0.0 + -1.4x + x2 = 0 + 2.2
-1.4x + x2 = 0 + 2.2
Combine like terms: 0 + 2.2 = 2.2
-1.4x + x2 = 2.2
The x term is -1.4x. Take half its coefficient (-0.7).
Square it (0.49) and add it to both sides.
Add '0.49' to each side of the equation.
-1.4x + 0.49 + x2 = 2.2 + 0.49
Reorder the terms:
0.49 + -1.4x + x2 = 2.2 + 0.49
Combine like terms: 2.2 + 0.49 = 2.69
0.49 + -1.4x + x2 = 2.69
Factor a perfect square on the left side:
(x + -0.7)(x + -0.7) = 2.69
Calculate the square root of the right side: 1.640121947
Break this problem into two subproblems by setting
(x + -0.7) equal to 1.640121947 and -1.640121947.
Subproblem 1
x + -0.7 = 1.640121947
Simplifying
x + -0.7 = 1.640121947
Reorder the terms:
-0.7 + x = 1.640121947
Solving
-0.7 + x = 1.640121947
Solving for variable 'x'.
Move all terms containing x to the left, all other terms to the right.
Add '0.7' to each side of the equation.
-0.7 + 0.7 + x = 1.640121947 + 0.7
Combine like terms: -0.7 + 0.7 = 0.0
0.0 + x = 1.640121947 + 0.7
x = 1.640121947 + 0.7
Combine like terms: 1.640121947 + 0.7 = 2.340121947
x = 2.340121947
Simplifying
x = 2.340121947
Subproblem 2
x + -0.7 = -1.640121947
Simplifying
x + -0.7 = -1.640121947
Reorder the terms:
-0.7 + x = -1.640121947
Solving
-0.7 + x = -1.640121947
Solving for variable 'x'.
Move all terms containing x to the left, all other terms to the right.
Add '0.7' to each side of the equation.
-0.7 + 0.7 + x = -1.640121947 + 0.7
Combine like terms: -0.7 + 0.7 = 0.0
0.0 + x = -1.640121947 + 0.7
x = -1.640121947 + 0.7
Combine like terms: -1.640121947 + 0.7 = -0.940121947
x = -0.940121947
Simplifying
x = -0.940121947
Solution
The solution to the problem is based on the solutions
from the subproblems.
x = {2.340121947, -0.940121947}
Red to total I believe is 12/23
Answer: No, she does not have enough.
Step-by-step explanation:
1. You have the following information given in the problem above:
- The measures of the three pieces are: 32 centimeters, 41.19 centimeters and 57.8 centimeters long.
- She need 200 centimeters of ribbon for the box.
2. Therefore, you must add the measures given in the problem to know if Marie has enough ribbon to decorate the gift box. Then:

3. As you can see:
130.99 cm<200 cm
Therefore, she does not have enough ribbon.
Answer:
You recently joined a nature club, and last week you went on a trip with the club into the countryside. Write an email to a friend about this. In your email, you should: . describe the place in the countryside you went to with the nature club explain what you learned during the trip to the countryside . invite your friend to join you on the next nature club trip. The pictures above may give you some ideas, and you can also use some ideas of your own. Your email should be between 150 and 200 words long. You will receive up to 8 marks for the content of your email, and up to 8 marks for the language used.
Step-by-step explanation:
You recently joined a nature club, and last week you went on a trip with the club into the countryside. Write an email to a friend about this. In your email, you should: . describe the place in the countryside you went to with the nature club explain what you learned during the trip to the countryside . invite your friend to join you on the next nature club trip. The pictures above may give you some ideas, and you can also use some ideas of your own. Your email should be between 150 and 200 words long. You will receive up to 8 marks for the content of your email, and up to 8 marks for the language used.