Y = -1 is a horizontal line going through "-1" on the y axis
Note that the point (1,2) is exactly 3 units of distance above the line y = -1
When we reflect across this line, the point (1,2) will just move straight down to exactly 3 units of space below the line y = -1. Since we are not shifting left or right, the x coordinate of our original point will not change. The y coordinate of our original point will now need to be reduced by 6(3 units down to get to the line of reflection and then 3 more down to get to the image location)
The coordinates of the image point will be (1, -4)
Now we need to do the same process with (1, -4) being reflected across y=1
Note (1,-4) is 5 units of distance below the line y = 1 , so we need to reflect the point upward so that the image point is located exactly 5 units of distance above the line y = 1 Again, the x coordinate does not change, and our final image coordinates are (1, 6)
I guess more simply stated, if you're just looking for the number in the green box it would be " 1 " .. Reflecting points across horizontal lines only result in changes of the "y" coordinate since there is no shift left or right.
Ooooohhh i'm am so sorry. The best thing u can do is ask your teacher & leave it blank!!! If I knew, I would love to help if i knew though!!!!
Answer:
44, 21
Step-by-step explanation:
x+y = 2x-23
x-y = 2y - 19
Rewrite
-x + y = -23
x - 3y = -19
Use elimination.
Answer:
Equation: y=2/3x-4
y intercept is (0,-4)
x intercept is (6, 0)
Step-by-step explanation:
The similarities between constructing a perpendicular line through a point on a line and constructing a perpendicular through a point off a line include:
- Both methods involve making a 90-degree angle between two lines.
- The methods determine a point equidistant from two equidistant points on the line.
<h3>What are perpendicular lines?</h3>
Perpendicular lines are defined as two lines that meet or intersect each other at right angles.
In this case, both methods involve making a 90-degree angle between two lines and the methods determine a point equidistant from two equidistant points on the line.
Learn more about perpendicular lines on:
brainly.com/question/7098341
#SPJ1