Explanation:
Precision represents that how close the different measurements of the sample one take are to one another.
- One can increase the precision in lab by paying attention to each and every detail.
- Usage of the equipment properly and also increasing the sample size.
-
Ensuring that the equipment is calibrated properly. They should be clean and functioning. Using equipment which is not functioning correctly can cause results to swing wildly and also bits of the debris stuck to the equipment can influence the measurements of the mass and the volume.
- Each measurement must be taken multiple times, especially if experiments in which combining of the substances in specific amounts is involved.
A second important difference between comets coming from the Kuiper Belt and from the Oort cloud is represented by their different characteristic periods.
In fact, short period comets are thought to generate in the Kuiper belt and have rather predictable orbits with short periods (up to 200 years). There are two major families of short period comets: the Jupiter family with periods of less than 20 years and the Halley family with periods form 20 to 200 years. That's short
Answer:
very small solid particles called interstellar dust.
Explanation:
In the space between the stars there is gas and dust, which represent at least 20% of the mass of our galaxy. In the Milky Way it is considered that there is a gas density of approximately 0.2 to 0.5 atoms / cm3 in the surroundings of the Sun; with respect to the dust an average of 1 g / cm3 is estimated.
Gas is about atoms and molecules, mainly hydrogen; In order of abundance, helium, carbon, oxygen, nitrogen and iron follow. On the other hand, the dust is tiny particles, generally smaller than 10 microns; the dust does not shine and therefore it is only distinguished when it is projected on bright regions (nebulae or clusters).
Interstellar matter is mainly concentrated towards the plane of the galaxy, in the strip corresponding to the Milky Way; there you can see bright nebulas of diffuse character called nebulas. These nebulae are classified according to three types: (a) bright or emission nebulae, (b) reflection nebulae and (c) planetary nebulae.
Hydrogen appears both ionized and neutral; The bright nebulae are composed of ionized hydrogen and other ionized elements. Non-ionized (neutral) hydrogen is found in the spiral arms of the Milky Way and can be detected through radio waves.
Answer:
0.266 m
Explanation:
Assuming the lump of patty is 3 Kg then applying the principal of conservation of linear momentum,
P= mv where p is momentum, m is mass and v is the speed of an object. In this case
where sunscripts p and b represent putty and block respectively, c is common velocity.
Substituting the given values then
3*8=v(15+3)
V=24/18=1.33 m/s
The resultant kinetic energy is transferred to spring hence we apply the law of conservation of energy
where k is spring constant and x is the compression of spring. Substituting the given values then

Given:-
- Speed of the unicycle = 20 m/s
- Time taken = 15 s
To Find: Distance travelled by the unicycle.
We know,
s = vt
where,
- s = Distance travelled,
- v = Speed &
- t = Time taken.
Therefore,
s = (20 m/s)(15 s)
→ s = (20 m)(15)
→ s = 300 m (Ans.)