Answer:
a) Θ = ω₀*t + ½αt² To complete first revolution 2π rads = 0*t + ½αt² and to complete the first and second combined 4π rads = 0*t + ½α(t+0.810s)² Divide second by first: 2 = (t + 0.810s)² / t² This is quadratic in t and has roots at t = -0.336 s ← ignore and t = 1.96 s ◄ b) Use either equation from above: 2π rads = 0*t + ½α(1.96s)² α = 3.27 rad/s² ◄ Hope this helps!
Explanation:
The correct answer would be B.
<u>The Weight </u>is a vector whose magnitude is the product of the mass m of the object and the magnitude of the local gravitational acceleration. Its always directed toward the center of the Earth.
I believe you got it correct already
Answer:
Yes
Explanation:
Since velocity is a vector, meaning it also relies on direction, the average speed can be different from her average velocity. An example would be if a runner turned around and ran backward after running 10 meters and returned to her starting point. If you took her average velocity of the entire trip it would actually be 0 but her average speed obviously would not be. This is why velocity can be negative but speed cannot.