Answer:
a) 28,662 cm² max error
0,0111 relative error
b) 102,692 cm³ max error
0,004 relative error
Step-by-step explanation:
Length of cicumference is: 90 cm
L = 2*π*r
Applying differentiation on both sides f the equation
dL = 2*π* dr ⇒ dr = 0,5 / 2*π
dr = 1/4π
The equation for the volume of the sphere is
V(s) = 4/3*π*r³ and for the surface area is
S(s) = 4*π*r²
Differentiating
a) dS(s) = 4*2*π*r* dr ⇒ where 2*π*r = L = 90
Then
dS(s) = 4*90 (1/4*π)
dS(s) = 28.662 cm² ( Maximum error since dr = (1/4π) is maximum error
For relative error
DS´(s) = (90/π) / 4*π*r²
DS´(s) = 90 / 4*π*(L/2*π)² ⇒ DS(s) = 2 /180
DS´(s) = 0,0111 cm²
b) V(s) = 4/3*π*r³
Differentiating we get:
DV(s) = 4*π*r² dr
Maximum error
DV(s) = 4*π*r² ( 1/ 4*π*) ⇒ DV(s) = (90)² / 8*π²
DV(s) = 102,692 cm³ max error
Relative error
DV´(v) = (90)² / 8*π²/ 4/3*π*r³
DV´(v) = 1/240
DV´(v) = 0,004
Answer:
Step-by-step explanation:
To prove Δ ABC similar to ΔDBE we can consider
Segments AC and DE are parallel.
⇒ DE intersects AB and BC in same ratio.
AB is a transversal line passing AC and DE.
⇒∠BAC=∠BDE [corresponding angles]
Angle B is congruent to itself due to the reflexive property.
All of them are telling a relation of parts of ΔABC to ΔDBE.
The only option which is not used to prove that ΔABC is similar to ΔDBE is the first option ,"The sum of angles A and B are supplementary to angle C".
For the first is 3864
The second is 1320
A=3.14(which is pie) x 20.5^2
A=420x pie
A=1320
For the third is 2544
3864-1320=2544
Sorry if this is wrong too.
Answer:
see below
Step-by-step explanation:


It will be 1.104 so i think it will be that ikd