The average speed is 116.66m/s.
Given - The path traced is 14km , time for jogging is 2 hrs=120min
To find the average speed-
- Speed refers to the ease of the movement and degree of mobility as a result of force application.
- Due to this there is involvement of velocity.
- Journey of average speed is the cumulative of distances and time.
- Kinetic theory refers to the Boltzmann constant connecting to the standards of distance traversed.
calculations-

Speed= 14 000 / 120
= 116.66m/s
To learn more about average speed -
<u>brainly.com/question/27753148</u>
#SPJ4
Answer:
<u>Option "C":</u> "4.5 g"
Explanation:
N0 = 36 g, Let half-life is T.
t = 3 T, n is number of half lives = t / T = 3
<u>By using the decay law of radioactivity</u>
N / N0 = (1 / 2)^n
where
"N0" be the "initial amount"
"N" be the "amount left"
"n" be the "number of half-lives"
N / 36 = (1/2)^3
N / 36 = 1 / 8
N = 36 / 8 = 4.5 g
I think there was momentum conserved
Explanation: I took the test
complete question:
A child bounces a 60 g superball on the sidewalk. The velocity change of the superball is from 22 m/s downward to 15 m/s upward. If the contact time with the sidewalk is 1/800 s, what is the magnitude of the average force exerted on the superball by the sidewalk
Answer:
F = 1776 N
Explanation:
mass of ball = 60 g = 0.06 kg
velocity of downward direction = 22 m/s = v1
velocity of upward direction = 15 m/s = v2
Δt = 1/800 = 0.00125 s
Linear momentum of a particle with mass and velocity is the product of the mass and it velocity.
p = mv
When a particle move freely and interact with another system within a period of time and again move freely like in this scenario it has a definite change in momentum. This change is defined as Impulse .
I = pf − pi = ∆p
F = ∆p/∆t = I/∆t
let the upward velocity be the positive
Δp = mv2 - m(-v1)
Δp = mv2 - m(-v1)
Δp = m (v2 + v1)
Δp = 0.06( 15 + 22)
Δp = 0.06(37)
Δp = 2.22 kg m/s
∆t = 0.00125
F = ∆p/∆t
F = 2.22/0.00125
F = 1776 N
Answer:

at t = 0.001 we have

at t = 0.01

at t = infinity

Explanation:
As we know that they are in series so the voltage across all three will be sum of all individual voltages
so it is given as

now we will have

now we have

So we will have

at t = 0 we have
q = 0

also we know that
at t = 0 i = 0




so we have

at t = 0.001 we have

at t = 0.01

at t = infinity
