Answer:
Explanation:
1) TRUE; potential difference can be calculated using path integral. Since the electric field is a conservative, the potential difference can be calculated using any path.
2) TRUE; since potential due to a charge is inversely dependent on distance, at infinity the potential will be almost zero.
3) TRUE, W = q.VBA.
4) FALSE; eV is a unit for work (or) energy.
5) TRUE; since the electric force is conservative force. There will be no loss in energy, the decreased potential energy will be coverted to kinetic energy.
6) FALSE; in the direction of electric field the potential decreases.
7) FALSE; equipotential surface is perpendicular to the electric field lines.
8) FALSE; electrostatic potential is scalar quantity. It depends only on the charge and distance from it.
9) FALSE; Inside a conductor the electric field is zero but the electric potential is constant at the value that is at the surface of the conductor.
10) TRUE; as long as the field is being measured outiside the body the bodies act as point charges. So electric fields due to all types of bodies charged identically will be equal.
True, they represent the direction of motion
<h2>
Answer: faster </h2>
The speed of sound varies depending on the medium through which the sound waves travel. In addition, it varies with changes in the temperature of the medium. This is because an <u>increase in temperature means that the frequency of interactions between the particles that transport the vibration increases</u>, hence this increase in activity increases the speed. That is why the speed of sound in a gas is not constant, but depends on the temperature.
So, if we want <u>the speed of sound in a gas to increase</u>, the<u> temperature</u> of that gas must <u>increase</u>, as well.
For example, the higher the air temperature, the greater the velocity of propagation. Experiments have shown that the speed of sound in air increases
for every
increase in temperature.
Therefore:
<h2>The speed of sound will be faster than in December</h2>
Answer:
El uso mas común de la energía potencial gravitacional, se da en los objetos cercanos a la superficie de la Tierra donde la aceleración gravitacional, se puede presumir que es constante y vale alrededor de 9.8 m/s2.
Explanation: