Explanation:
Because the temperature and the radiation are not correlated, they're not represented as functions of each other, they're represented as independent variables thus using graph 5 you cannot figure out how one affect another
The given question is incomplete. The complete question is as follows.
In a nuclear physics experiment, a proton (mass
kg, charge +e =
C) is fired directly at a target nucleus of unknown charge. (You can treat both objects as point charges, and assume that the nucleus remains at rest.) When it is far from its target, the proton has speed
m/s. The proton comes momentarily to rest at a distance
m from the center of the target nucleus, then flies back in the direction from which it came. What is the electric potential energy of the proton and nucleus when they are
m apart?
Explanation:
The given data is as follows.
Mass of proton =
kg
Charge of proton = 
Speed of proton = 
Distance traveled = 
We will calculate the electric potential energy of the proton and the nucleus by conservation of energy as follows.
=

where, 
U = 
Putting the given values into the above formula as follows.
U = 
= 
= 
Therefore, we can conclude that the electric potential energy of the proton and nucleus is
.
Answer:
D. 24 lb
Explanation:
Tina has been dieting for 13 weeks
First week she lost 3 pounds
Next week she gained 1 pound and did not lose any. This will be subtracted as she has gained a pound
The remaining 11 weeks she lost 2 pounds per week
Weight lost in the 11 weeks = 11×2 =22 pounds
Total weight lost
3-1+22 = 24 lb
Tina has lost 24 pounds in total during the 13 weeks
A woman walks in a straight line with the sun to her right at six o'clock in the morning.
The sun rises East of her, so the woman is walking toward the North pole.
A man walks in a straight line with the sun to his right at six o'clock in the evening.
The sun sets West of him, so the man is walking toward the South pole.
The woman and the man are both walking along lines of constant longitude.
The time of motion of the 5 kg object will be the same as 1 kg since both objects are dropped from the same height.
The given parameters;
<em>Mass of the first object, m1 = 1 kg</em>
<em>Mass of the second object, m2 = 5 kg</em>
The final velocity of the objects during the downward motion is calculated as follows;

The time of motion of the object from the given height is calculated as;

The time of motion of each object is independent of mass of the object.
Thus, the time of motion of the 5 kg object will be the same as 1 kg since both objects are dropped from the same height.
Learn more about time of motion here: brainly.com/question/2364404