Answer:
0.33 hz
Explanation:
the formula for the frequency in this situation is f=v/wavelength
The correct answer to this qustion is velocity and time
Answer:
c. expanded polyurethane
Explanation:
Thermal performance of a building fabric is measured in terms of heat loss and is expressed as U-value or R-value. U-value is the rate of heat transferred through a structure divided by the difference in temperature across the structure with a unit of measurement of W/m²K.You can calculate the U-value of a by getting the reciprocal of the sum of thermal resistances , R, making the building material.
If you have the value of R, then U=1/R
Material size R U
plywood 1" 1.25 0.8
Poured concrete 2" 0.99 1.010
Expanded polyurethane 1" 6.5 0.1538
Asbestos shingles 1" 0.03 33.33
The material with lowest U-value is expanded polyurethane
Answer:
Solids
:A solid has a definite shape and volume because the molecules that make up the solid are packed closely together and move slowly. Solids are often crystalline; examples of crystalline solids include table salt, sugar, diamonds, and many other minerals. Solids are sometimes formed when liquids or gases are cooled; ice is an example of a cooled liquid which has become solid. Other examples of solids include wood, metal, and rock at room temperature. Liquids
: A liquid has a definite volume but takes the shape of its container. Examples of liquids include water and oil. Gases may liquefy when they cool, as is the case with water vapor. This occurs as the molecules in the gas slow down and lose energy. Solids may liquefy when they heat up; molten lava is an example of solid rock which has liquefied as a result of intense heat. Gases
: A gas has neither a definite volume nor a definite shape. Some gases can be seen and felt, while others are intangible for human beings. Examples of gases are air, oxygen, and helium. Earth's atmosphere is made up of gases including nitrogen, oxygen, and carbon dioxide. Plasma: Plasma has neither a definite volume nor a definite shape. Plasma often is seen in ionized gases, but it is distinct from a gas because it possesses unique properties. Free electrical charges (not bound to atoms or ions) cause the plasma to be electrically conductive. The plasma may be formed by heating and ionizing a gas. Examples of plasma include stars, lightning, fluorescent lights, and neon signs.
Explanation: